Abstract

Self-organized nanostructures that provide antireflection properties grow on PMMA caused by plasma ion etching. A new procedure uses a thin initial layer prior to the etching step. Different types of antireflective structures can now be produced in a shorter time and with fewer limitations on the type of polymer that can be used. The durability of the structured surfaces can be improved by the deposition of additional thin films.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Formation of antireflective nanostructures on melamine and N,N´-di (1-naphthyl)-N,N´-diphenyl benzidine (NPB)

U. Schulz, C. Präfke, P. Munzert, C. Gödeker, and N. Kaiser
Opt. Mater. Express 1(1) 101-107 (2011)

A double nanostructure for wide-angle antireflection on optical polymers

U. Schulz, F. Rickelt, P. Munzert, and N. Kaiser
Opt. Mater. Express 4(3) 568-574 (2014)

References

  • View by:
  • |
  • |
  • |

  1. U. Schulz, “Review of modern techniques to generate antireflective properties on thermoplastic polymers,” Appl. Opt. 45, 1608–1618 (2006).
    [Crossref] [PubMed]
  2. S. Bäumer, (ed.) Handbook of Plastic Optics (Wiley-VCH, Frankfurt, 2005).
    [Crossref]
  3. P.B. Clapham and M.C. Hutley, “Reduction of lens reflection by the ″moth eye″ principle,” Nature 244, 281–282 (1973).
    [Crossref]
  4. T. Sawitowski, N. Beyer, and F. Schulz, “Bio-inspired anti-reflective surfaces by imprinting processes,” in: The Nano-Micro Interface, H.J. Fecht and M. Werner, eds. (Wiley-VCH, Weinheim, 2004).
  5. P. Munzert, H. Uhlig, M. Scheler, U. Schulz, and N. Kaiser, Method for reducing boundary surface reflection of plastic substrates and substrate modified in such manner and use thereof. WIPO PCT publication WO04024805C1, 13 May 2004.
  6. A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Technol. 200, 58–61 (2005).
    [Crossref]
  7. S. Rousset et al., “Self organized epitaxial growth on spontaneous nanopatterned templates,” C.R. Phys. 6, 33–46 (2005).
    [Crossref]
  8. R.M. Bradley and J.M. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
    [Crossref]
  9. M.C. Coen, R. Lehmann, P. Groening, and L. Schlapbach, “Modification of the micro- and nanotopography of several polymers by plasma treatments,” Appl. Surf. Sci. 207, 276–286 (2003).
    [Crossref]
  10. S. Pongratz and A. Züller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
    [Crossref]
  11. A. Licciardello, M.E. Fragala, G. Foti, G. Compagnini, and O. Puglisi, “Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate,” Nucl. Instrum. Methods Phys. Res. B 116, 168–172 (1996).
    [Crossref]
  12. A. Holländer, R. Wilken, and J. Behnisch, “Subsurface chemistry in the plasma treatment of polymers,” Surf. Coat. Technol.  116–119, 788–791 (1999).
    [Crossref]
  13. Y. Kanamori and K. Hane, “Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique,” Opt. Rev. 9, 183–185 (2002).
    [Crossref]

2006 (1)

2005 (2)

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Technol. 200, 58–61 (2005).
[Crossref]

S. Rousset et al., “Self organized epitaxial growth on spontaneous nanopatterned templates,” C.R. Phys. 6, 33–46 (2005).
[Crossref]

2003 (1)

M.C. Coen, R. Lehmann, P. Groening, and L. Schlapbach, “Modification of the micro- and nanotopography of several polymers by plasma treatments,” Appl. Surf. Sci. 207, 276–286 (2003).
[Crossref]

2002 (1)

Y. Kanamori and K. Hane, “Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique,” Opt. Rev. 9, 183–185 (2002).
[Crossref]

1999 (1)

A. Holländer, R. Wilken, and J. Behnisch, “Subsurface chemistry in the plasma treatment of polymers,” Surf. Coat. Technol.  116–119, 788–791 (1999).
[Crossref]

1996 (1)

A. Licciardello, M.E. Fragala, G. Foti, G. Compagnini, and O. Puglisi, “Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate,” Nucl. Instrum. Methods Phys. Res. B 116, 168–172 (1996).
[Crossref]

1992 (1)

S. Pongratz and A. Züller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
[Crossref]

1988 (1)

R.M. Bradley and J.M. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

1973 (1)

P.B. Clapham and M.C. Hutley, “Reduction of lens reflection by the ″moth eye″ principle,” Nature 244, 281–282 (1973).
[Crossref]

Behnisch, J.

A. Holländer, R. Wilken, and J. Behnisch, “Subsurface chemistry in the plasma treatment of polymers,” Surf. Coat. Technol.  116–119, 788–791 (1999).
[Crossref]

Beyer, N.

T. Sawitowski, N. Beyer, and F. Schulz, “Bio-inspired anti-reflective surfaces by imprinting processes,” in: The Nano-Micro Interface, H.J. Fecht and M. Werner, eds. (Wiley-VCH, Weinheim, 2004).

Bradley, R.M.

R.M. Bradley and J.M. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

Clapham, P.B.

P.B. Clapham and M.C. Hutley, “Reduction of lens reflection by the ″moth eye″ principle,” Nature 244, 281–282 (1973).
[Crossref]

Coen, M.C.

M.C. Coen, R. Lehmann, P. Groening, and L. Schlapbach, “Modification of the micro- and nanotopography of several polymers by plasma treatments,” Appl. Surf. Sci. 207, 276–286 (2003).
[Crossref]

Compagnini, G.

A. Licciardello, M.E. Fragala, G. Foti, G. Compagnini, and O. Puglisi, “Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate,” Nucl. Instrum. Methods Phys. Res. B 116, 168–172 (1996).
[Crossref]

Fecht, H.J.

T. Sawitowski, N. Beyer, and F. Schulz, “Bio-inspired anti-reflective surfaces by imprinting processes,” in: The Nano-Micro Interface, H.J. Fecht and M. Werner, eds. (Wiley-VCH, Weinheim, 2004).

Foti, G.

A. Licciardello, M.E. Fragala, G. Foti, G. Compagnini, and O. Puglisi, “Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate,” Nucl. Instrum. Methods Phys. Res. B 116, 168–172 (1996).
[Crossref]

Fragala, M.E.

A. Licciardello, M.E. Fragala, G. Foti, G. Compagnini, and O. Puglisi, “Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate,” Nucl. Instrum. Methods Phys. Res. B 116, 168–172 (1996).
[Crossref]

Groening, P.

M.C. Coen, R. Lehmann, P. Groening, and L. Schlapbach, “Modification of the micro- and nanotopography of several polymers by plasma treatments,” Appl. Surf. Sci. 207, 276–286 (2003).
[Crossref]

Hane, K.

Y. Kanamori and K. Hane, “Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique,” Opt. Rev. 9, 183–185 (2002).
[Crossref]

Harper, J.M.

R.M. Bradley and J.M. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

Holländer, A.

A. Holländer, R. Wilken, and J. Behnisch, “Subsurface chemistry in the plasma treatment of polymers,” Surf. Coat. Technol.  116–119, 788–791 (1999).
[Crossref]

Hutley, M.C.

P.B. Clapham and M.C. Hutley, “Reduction of lens reflection by the ″moth eye″ principle,” Nature 244, 281–282 (1973).
[Crossref]

Kaiser, N.

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Technol. 200, 58–61 (2005).
[Crossref]

P. Munzert, H. Uhlig, M. Scheler, U. Schulz, and N. Kaiser, Method for reducing boundary surface reflection of plastic substrates and substrate modified in such manner and use thereof. WIPO PCT publication WO04024805C1, 13 May 2004.

Kaless, A.

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Technol. 200, 58–61 (2005).
[Crossref]

Kanamori, Y.

Y. Kanamori and K. Hane, “Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique,” Opt. Rev. 9, 183–185 (2002).
[Crossref]

Lehmann, R.

M.C. Coen, R. Lehmann, P. Groening, and L. Schlapbach, “Modification of the micro- and nanotopography of several polymers by plasma treatments,” Appl. Surf. Sci. 207, 276–286 (2003).
[Crossref]

Licciardello, A.

A. Licciardello, M.E. Fragala, G. Foti, G. Compagnini, and O. Puglisi, “Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate,” Nucl. Instrum. Methods Phys. Res. B 116, 168–172 (1996).
[Crossref]

Munzert, P.

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Technol. 200, 58–61 (2005).
[Crossref]

P. Munzert, H. Uhlig, M. Scheler, U. Schulz, and N. Kaiser, Method for reducing boundary surface reflection of plastic substrates and substrate modified in such manner and use thereof. WIPO PCT publication WO04024805C1, 13 May 2004.

Pongratz, S.

S. Pongratz and A. Züller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
[Crossref]

Puglisi, O.

A. Licciardello, M.E. Fragala, G. Foti, G. Compagnini, and O. Puglisi, “Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate,” Nucl. Instrum. Methods Phys. Res. B 116, 168–172 (1996).
[Crossref]

Rousset, S.

S. Rousset et al., “Self organized epitaxial growth on spontaneous nanopatterned templates,” C.R. Phys. 6, 33–46 (2005).
[Crossref]

Sawitowski, T.

T. Sawitowski, N. Beyer, and F. Schulz, “Bio-inspired anti-reflective surfaces by imprinting processes,” in: The Nano-Micro Interface, H.J. Fecht and M. Werner, eds. (Wiley-VCH, Weinheim, 2004).

Scheler, M.

P. Munzert, H. Uhlig, M. Scheler, U. Schulz, and N. Kaiser, Method for reducing boundary surface reflection of plastic substrates and substrate modified in such manner and use thereof. WIPO PCT publication WO04024805C1, 13 May 2004.

Schlapbach, L.

M.C. Coen, R. Lehmann, P. Groening, and L. Schlapbach, “Modification of the micro- and nanotopography of several polymers by plasma treatments,” Appl. Surf. Sci. 207, 276–286 (2003).
[Crossref]

Schulz, F.

T. Sawitowski, N. Beyer, and F. Schulz, “Bio-inspired anti-reflective surfaces by imprinting processes,” in: The Nano-Micro Interface, H.J. Fecht and M. Werner, eds. (Wiley-VCH, Weinheim, 2004).

Schulz, U.

U. Schulz, “Review of modern techniques to generate antireflective properties on thermoplastic polymers,” Appl. Opt. 45, 1608–1618 (2006).
[Crossref] [PubMed]

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Technol. 200, 58–61 (2005).
[Crossref]

P. Munzert, H. Uhlig, M. Scheler, U. Schulz, and N. Kaiser, Method for reducing boundary surface reflection of plastic substrates and substrate modified in such manner and use thereof. WIPO PCT publication WO04024805C1, 13 May 2004.

Uhlig, H.

P. Munzert, H. Uhlig, M. Scheler, U. Schulz, and N. Kaiser, Method for reducing boundary surface reflection of plastic substrates and substrate modified in such manner and use thereof. WIPO PCT publication WO04024805C1, 13 May 2004.

Werner, M.

T. Sawitowski, N. Beyer, and F. Schulz, “Bio-inspired anti-reflective surfaces by imprinting processes,” in: The Nano-Micro Interface, H.J. Fecht and M. Werner, eds. (Wiley-VCH, Weinheim, 2004).

Wilken, R.

A. Holländer, R. Wilken, and J. Behnisch, “Subsurface chemistry in the plasma treatment of polymers,” Surf. Coat. Technol.  116–119, 788–791 (1999).
[Crossref]

Züller, A.

S. Pongratz and A. Züller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
[Crossref]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

M.C. Coen, R. Lehmann, P. Groening, and L. Schlapbach, “Modification of the micro- and nanotopography of several polymers by plasma treatments,” Appl. Surf. Sci. 207, 276–286 (2003).
[Crossref]

C.R. Phys. (1)

S. Rousset et al., “Self organized epitaxial growth on spontaneous nanopatterned templates,” C.R. Phys. 6, 33–46 (2005).
[Crossref]

J. Vac. Sci. Technol. A (2)

R.M. Bradley and J.M. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[Crossref]

S. Pongratz and A. Züller, “Plasma ion assisted deposition: A promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
[Crossref]

Nature (1)

P.B. Clapham and M.C. Hutley, “Reduction of lens reflection by the ″moth eye″ principle,” Nature 244, 281–282 (1973).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

A. Licciardello, M.E. Fragala, G. Foti, G. Compagnini, and O. Puglisi, “Ion beam effects on the surface and on the bulk of thin films of polymethylmethacrylate,” Nucl. Instrum. Methods Phys. Res. B 116, 168–172 (1996).
[Crossref]

Opt. Rev. (1)

Y. Kanamori and K. Hane, “Broadband antireflection subwavelength gratings for polymethyl methacrylate fabricated with molding technique,” Opt. Rev. 9, 183–185 (2002).
[Crossref]

Surf. Coat. Technol (1)

A. Holländer, R. Wilken, and J. Behnisch, “Subsurface chemistry in the plasma treatment of polymers,” Surf. Coat. Technol.  116–119, 788–791 (1999).
[Crossref]

Surf. Coat. Technol. (1)

A. Kaless, U. Schulz, P. Munzert, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Technol. 200, 58–61 (2005).
[Crossref]

Other (3)

S. Bäumer, (ed.) Handbook of Plastic Optics (Wiley-VCH, Frankfurt, 2005).
[Crossref]

T. Sawitowski, N. Beyer, and F. Schulz, “Bio-inspired anti-reflective surfaces by imprinting processes,” in: The Nano-Micro Interface, H.J. Fecht and M. Werner, eds. (Wiley-VCH, Weinheim, 2004).

P. Munzert, H. Uhlig, M. Scheler, U. Schulz, and N. Kaiser, Method for reducing boundary surface reflection of plastic substrates and substrate modified in such manner and use thereof. WIPO PCT publication WO04024805C1, 13 May 2004.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Surface morphology by SEM (inclination angle 45°) and spectral properties of PMMA before and after structuring of both sides: (a) structure spontaneously formed by ion etching; and (b) structure formed after deposition of an initial layer followed by ion etching.

Fig. 2.
Fig. 2.

Refractive index profiles: (a) simulated for antireflective structure 2; (b) common antireflective coating consisting of high index (H) and low index (L) thin film materials; and (c) single surface reflection at light incidence angles of 25° and 65°, measured on PMMA sample with structure 2 and calculated for the simulated index profile and the AR coating.

Fig. 3.
Fig. 3.

Surface morphology by SEM and spectral reflection of different polymer surfaces after deposition of initial layers followed by plasma etching: (a) polyamide; (b) polyethersulfone; and single surface reflection measured before and after surface modification.

Fig. 4.
Fig. 4.

Surface morphology by SEM and optical properties of Zeonex: (a) sample with an initial layer of 1.5 nm of TiO2 etched for 300 s; (b) sample with an initial layer of 1.5 nm of TiO2 and a 40-nm protective top layer of SiO2 etched for 200 s; and transmission und reflection of the samples before and after structuring of both sides.

Metrics