Abstract

We demonstrate a simple waveplate analyzer to characterize linear retarders using magneto-optic (MO) polarization rotators. The all-solid state device can provide highly accurate measurements for both the retardation of the waveplate and the orientation of optical axes simultaneously.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Goldstein, Polarized light, (Second Edition, Marcel Dekker, Inc., NY, 2003).
  2. E. Collett, Polarized light: Fundamentals and Applications, (Marcel Dekker, New York, 1993) pp. 100-103.
  3. H. G. Jerrard, "Optical compensators for measurement of elliptical polarization," J. Opt. Soc. Am. 38, 35-59 (1948).
  4. D. H. Goldstein, "Mueller matrix dual-rotating retarder polarimeter," Appl. Opt. 31, 6676-6683 (1992).
  5. E. Dijkstra, H. Meekes, and M. Kremers, "The high-accuracy universal polarimeter," J. Phys. D 24, 1861-1868 (1991).
  6. P. A. Williams, A. H. Rose, and C. M. Wang, "Rotating-polarizer polarimeter for accurate retardance measurement," Appl. Opt. 36,6466-6472 (1997).
  7. D. B. Chenault and R. A. Chipman, "Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter," Appl. Opt. 32, 3513-3519 (1993).
  8. L. Shyu, C. Chen, and D. Su, "Method for measuring the retardation of a wave plate," Appl. Opt. 32, 42 4228-4230 (1993).
  9. J. E. Hayden and S. D. Jacobs, "Automated spatially scanning ellipsometer for retardation measurements of transparent materials," Appl. Opt. 32, 6256-6263 (1993).
  10. H. Takasaki, M. Isobe, T. Masaki, A. Konda, I. Agatsuma, and Y. Watanabe, Appl. Opt. 3, 343-350 (1964).
  11. H. F. Hazebroek and A. A. Holscher, J Phys. E 6, 822-826 (1973).
  12. T. Oakberg, "Measurement of waveplate retardation using a photoelastic modulator," Proc. SPIE 3121, 19-22, (1997).
  13. K. B. Rochford and C. M. Wang, "Accurate interferometric retardance measurements," Appl. Opt. 36, 6473-6479 (1997).
  14. X. S. Yao, L. S. Yan, and Y. Shi, "Highly repeatable all-solid-state polarization-state generator," Opt. Lett. 30, 1324-1327 (2005)
  15. X. S. Yao, X. Chen, and L. S. Yan, "Self-calibrating binary polarization analyzer," Opt. Lett. 31, 1948-1950 (2006)
  16. M. Born and E. Wolf, Principle of optics: Electromagnetic theory of propagation, interference and diffraction of light, (7th Edition, University Press, Cambridge, UK, 1999).

2006 (1)

2005 (1)

1997 (3)

1993 (2)

1992 (1)

1991 (1)

E. Dijkstra, H. Meekes, and M. Kremers, "The high-accuracy universal polarimeter," J. Phys. D 24, 1861-1868 (1991).

1973 (1)

H. F. Hazebroek and A. A. Holscher, J Phys. E 6, 822-826 (1973).

1964 (1)

H. Takasaki, M. Isobe, T. Masaki, A. Konda, I. Agatsuma, and Y. Watanabe, Appl. Opt. 3, 343-350 (1964).

1948 (1)

Agatsuma, I.

H. Takasaki, M. Isobe, T. Masaki, A. Konda, I. Agatsuma, and Y. Watanabe, Appl. Opt. 3, 343-350 (1964).

Chen, X.

Chenault, D. B.

Chipman, R. A.

Dijkstra, E.

E. Dijkstra, H. Meekes, and M. Kremers, "The high-accuracy universal polarimeter," J. Phys. D 24, 1861-1868 (1991).

Goldstein, D. H.

Hayden, J. E.

Hazebroek, H. F.

H. F. Hazebroek and A. A. Holscher, J Phys. E 6, 822-826 (1973).

Holscher, A. A.

H. F. Hazebroek and A. A. Holscher, J Phys. E 6, 822-826 (1973).

Isobe, M.

H. Takasaki, M. Isobe, T. Masaki, A. Konda, I. Agatsuma, and Y. Watanabe, Appl. Opt. 3, 343-350 (1964).

Jacobs, S. D.

Jerrard, H. G.

Konda, A.

H. Takasaki, M. Isobe, T. Masaki, A. Konda, I. Agatsuma, and Y. Watanabe, Appl. Opt. 3, 343-350 (1964).

Kremers, M.

E. Dijkstra, H. Meekes, and M. Kremers, "The high-accuracy universal polarimeter," J. Phys. D 24, 1861-1868 (1991).

Masaki, T.

H. Takasaki, M. Isobe, T. Masaki, A. Konda, I. Agatsuma, and Y. Watanabe, Appl. Opt. 3, 343-350 (1964).

Meekes, H.

E. Dijkstra, H. Meekes, and M. Kremers, "The high-accuracy universal polarimeter," J. Phys. D 24, 1861-1868 (1991).

Oakberg, T.

T. Oakberg, "Measurement of waveplate retardation using a photoelastic modulator," Proc. SPIE 3121, 19-22, (1997).

Phys, J

H. F. Hazebroek and A. A. Holscher, J Phys. E 6, 822-826 (1973).

Rochford, K. B.

Rose, A. H.

Shi, Y.

Takasaki, H.

H. Takasaki, M. Isobe, T. Masaki, A. Konda, I. Agatsuma, and Y. Watanabe, Appl. Opt. 3, 343-350 (1964).

Wang, C. M.

Watanabe, Y.

H. Takasaki, M. Isobe, T. Masaki, A. Konda, I. Agatsuma, and Y. Watanabe, Appl. Opt. 3, 343-350 (1964).

Williams, P. A.

Yan, L. S.

Yan, L.S.

Yao, X. S.

Appl. Opt. (6)

E (1)

H. F. Hazebroek and A. A. Holscher, J Phys. E 6, 822-826 (1973).

J. Opt. Soc. Am. (1)

J. Phys. D (1)

E. Dijkstra, H. Meekes, and M. Kremers, "The high-accuracy universal polarimeter," J. Phys. D 24, 1861-1868 (1991).

Opt. Lett. (2)

Proc. SPIE (1)

T. Oakberg, "Measurement of waveplate retardation using a photoelastic modulator," Proc. SPIE 3121, 19-22, (1997).

Other (4)

D. Goldstein, Polarized light, (Second Edition, Marcel Dekker, Inc., NY, 2003).

E. Collett, Polarized light: Fundamentals and Applications, (Marcel Dekker, New York, 1993) pp. 100-103.

M. Born and E. Wolf, Principle of optics: Electromagnetic theory of propagation, interference and diffraction of light, (7th Edition, University Press, Cambridge, UK, 1999).

L. Shyu, C. Chen, and D. Su, "Method for measuring the retardation of a wave plate," Appl. Opt. 32, 42 4228-4230 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The proposed waveplate analyzer using 4 MO rotators (R1~R4): Polarizer P1 is oriented 22.5° from the vertical axis (y-axis), polarizer P2 and the fast-axis of λ/4 waveplate are aligned vertically, and the rotation angles of MO rotators are about ±22.5° at their center wavelength.

Fig. 2.
Fig. 2.

Typical measurement results with the normalized intensity for the half- and quarter-wave plate. The dash lines are for reference only

Fig. 3.
Fig. 3.

Typical wavelength dependence curves of the retardance and orientation angle of waveplates measured by our WPA

Tables (2)

Tables Icon

Table 1: Relationship of a, b and logic states of rotators

Tables Icon

Table 2: Least-square-fitting results for different wave plates

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I out = κ I 0 2 { 1 + [ cos 2 ( α θ wp ) cos 2 ( β + θ wp ) + sin 2 ( α θ wp ) sin 2 ( β + θ wp ) cos ( Γ ) ] S 1
+ [ sin 2 ( α θ wp ) cos 2 ( β + θ wp ) + cos 2 ( α θ wp ) sin 2 ( β + θ wp ) cos ( Γ ) ] S 2 + sin 2 ( β + θ wp ) sin Γ S 3 }
α = n = 1 2 ( 1 ) bn θ
β = n = 3 4 ( 1 ) bn θ .
I j = f ( α j ( θ ) , β j ( θ ) , I 0 , S 1 , S 2 , S 3 , θ wp , Γ ) , j = 1,2 , . . . 9
I j = κ I 0 2 [ 1 cos 2 ( α j ( θ ) + β j ( θ ) ) S 1 + sin 2 ( α j ( θ ) + β j ( θ ) ) S 2 ]
= f i ( I 0 , θ , S 1 , S 2 , S 3 )
S 1 2 + S 2 2 + S 3 2 = 1 ( S 3 > 0 )
σ = j ( I j , Exp I j , Fit ) 2 I 0 2 9

Metrics