Abstract

This work reports fabrication of inverse silica opal photonic crystal structures from direct polystyrene micro sphere opals using low-temperature sol-gel infiltration of silica, and examines performance of these photonic crystals as environmental refractive index sensors. Sensitivity of the spectral position and optical attenuation of photonic stop gaps is found to allow detection of the index changes by the amount of ~10-3. The high value of sensitivity, which is comparable with those of other optical sensing techniques, along with simplicity of the optical detection setup required for sensing, and the low-temperature, energy-efficient fabrication process make inverse silica opals attractive systems for optical sensing applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  3. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
    [Crossref] [PubMed]
  4. H. Fudouzi and Y. Xia, “Photonic papers and inks: color writing with colorless materials,” Adv. Mater. 15, 892–896 (2003).
    [Crossref]
  5. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829 (2003).
  6. H. Altug and J. Vučkovič, “Polarization control and optical sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30, 982–984 (2005).
    [Crossref] [PubMed]
  7. E. Chow, L. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
    [Crossref] [PubMed]
  8. T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 5659 (2006).
    [Crossref]
  9. M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
    [Crossref]
  10. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12, 4080–4087 (2004).
    [Crossref] [PubMed]
  11. A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.
  12. S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, and H. Misawa, “Formation of free-standing micro-pyramid colloidal crystals grown on silicon substrate,” Appl. Phys. Lett. 82, 4283–4285 (2003).
    [Crossref]
  13. V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and Characterization of Photonic Crystals,” J. Photochem. Photobiol. C 2, 35–69 (2001).
    [Crossref]
  14. S. Juodkazis, E. Bernstein, J.-C Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method,” Thin Solid Films 322, 238–244 (1998).
    [Crossref]
  15. S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide,” Opt. Commun. 148, 242–248 (1998).
    [Crossref]
  16. R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mat. 14, 3305–3315 (2002).
    [Crossref]
  17. D. L. Wood, E. M. Rabinovich, J. D.W. Johnson, J. B. MacChesney, and E. M. Vogel, “Preparation of high-silica glasses from colloidal gels: III Infrared spectrophotometric studies,” J. Am. Ceram. Soc. 66, 693 – 699 (1983).
    [Crossref]
  18. S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6, 145 – 162 (1971).
    [Crossref]
  19. Y. Nishijima, et al, to be published (2007).
  20. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).
  21. J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
    [Crossref] [PubMed]
  22. K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
    [Crossref]

2006 (4)

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 5659 (2006).
[Crossref]

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.

J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
[Crossref] [PubMed]

2005 (1)

2004 (2)

2003 (3)

H. Fudouzi and Y. Xia, “Photonic papers and inks: color writing with colorless materials,” Adv. Mater. 15, 892–896 (2003).
[Crossref]

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829 (2003).

S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, and H. Misawa, “Formation of free-standing micro-pyramid colloidal crystals grown on silicon substrate,” Appl. Phys. Lett. 82, 4283–4285 (2003).
[Crossref]

2002 (1)

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mat. 14, 3305–3315 (2002).
[Crossref]

2001 (2)

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and Characterization of Photonic Crystals,” J. Photochem. Photobiol. C 2, 35–69 (2001).
[Crossref]

2000 (1)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

1998 (2)

S. Juodkazis, E. Bernstein, J.-C Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method,” Thin Solid Films 322, 238–244 (1998).
[Crossref]

S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide,” Opt. Commun. 148, 242–248 (1998).
[Crossref]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

1983 (1)

D. L. Wood, E. M. Rabinovich, J. D.W. Johnson, J. B. MacChesney, and E. M. Vogel, “Preparation of high-silica glasses from colloidal gels: III Infrared spectrophotometric studies,” J. Am. Ceram. Soc. 66, 693 – 699 (1983).
[Crossref]

1971 (1)

S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6, 145 – 162 (1971).
[Crossref]

Ahopelto, J.

J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
[Crossref] [PubMed]

Al-Daous, M.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mat. 14, 3305–3315 (2002).
[Crossref]

Altug, H.

Arpiainen, S.

J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
[Crossref] [PubMed]

Asher, S. A.

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829 (2003).

Baryshev, A.

A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.

Bernstein, E.

S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide,” Opt. Commun. 148, 242–248 (1998).
[Crossref]

S. Juodkazis, E. Bernstein, J.-C Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method,” Thin Solid Films 322, 238–244 (1998).
[Crossref]

Blanc, W.

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Blanco, A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Blanford, C. F.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mat. 14, 3305–3315 (2002).
[Crossref]

Blondy, J-M.

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Bovier, C.

S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide,” Opt. Commun. 148, 242–248 (1998).
[Crossref]

S. Juodkazis, E. Bernstein, J.-C Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method,” Thin Solid Films 322, 238–244 (1998).
[Crossref]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Chow, E.

Colvin, V. L.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 5659 (2006).
[Crossref]

Dewynter-Marty, V.

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Driel, H. M. van

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Dussardier, B.

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Ferdinand, P.

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Frignac, Y.

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Fudouzi, H.

H. Fudouzi and Y. Xia, “Photonic papers and inks: color writing with colorless materials,” Adv. Mater. 15, 892–896 (2003).
[Crossref]

Fujii, A.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Fujikawa, R.

A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.

Fujine, T.

S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, and H. Misawa, “Formation of free-standing micro-pyramid colloidal crystals grown on silicon substrate,” Appl. Phys. Lett. 82, 4283–4285 (2003).
[Crossref]

Fukuda, K.

S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, and H. Misawa, “Formation of free-standing micro-pyramid colloidal crystals grown on silicon substrate,” Appl. Phys. Lett. 82, 4283–4285 (2003).
[Crossref]

Girolami, G.

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Granovsky, A.

A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.

Hansen, T.

Hidayat, R.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Holtz, J. H.

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829 (2003).

Huy, M. C. Phan

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Inoue, M.

A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.

Jhon, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, J. D.W.

D. L. Wood, E. M. Rabinovich, J. D.W. Johnson, J. B. MacChesney, and E. M. Vogel, “Preparation of high-silica glasses from colloidal gels: III Infrared spectrophotometric studies,” J. Am. Ceram. Soc. 66, 693 – 699 (1983).
[Crossref]

Jonsson, F.

J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
[Crossref] [PubMed]

Juodkazis, S.

S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, and H. Misawa, “Formation of free-standing micro-pyramid colloidal crystals grown on silicon substrate,” Appl. Phys. Lett. 82, 4283–4285 (2003).
[Crossref]

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and Characterization of Photonic Crystals,” J. Photochem. Photobiol. C 2, 35–69 (2001).
[Crossref]

S. Juodkazis, E. Bernstein, J.-C Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method,” Thin Solid Films 322, 238–244 (1998).
[Crossref]

S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide,” Opt. Commun. 148, 242–248 (1998).
[Crossref]

Kajii, H.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Kawagishi, Y.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Khanikaev, A.

A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.

Laffort, G.

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Leonard, S. W.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Lim, P.

A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Ludvigsen, H.

MacChesney, J. B.

D. L. Wood, E. M. Rabinovich, J. D.W. Johnson, J. B. MacChesney, and E. M. Vogel, “Preparation of high-silica glasses from colloidal gels: III Infrared spectrophotometric studies,” J. Am. Ceram. Soc. 66, 693 – 699 (1983).
[Crossref]

Mackenzie, J. D.

S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6, 145 – 162 (1971).
[Crossref]

Marcinkevicius, A.

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and Characterization of Photonic Crystals,” J. Photochem. Photobiol. C 2, 35–69 (2001).
[Crossref]

Matsui, T.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Matsuo, S.

S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, and H. Misawa, “Formation of free-standing micro-pyramid colloidal crystals grown on silicon substrate,” Appl. Phys. Lett. 82, 4283–4285 (2003).
[Crossref]

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and Characterization of Photonic Crystals,” J. Photochem. Photobiol. C 2, 35–69 (2001).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Mirkarimi, L.

Misawa, H.

S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, and H. Misawa, “Formation of free-standing micro-pyramid colloidal crystals grown on silicon substrate,” Appl. Phys. Lett. 82, 4283–4285 (2003).
[Crossref]

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and Characterization of Photonic Crystals,” J. Photochem. Photobiol. C 2, 35–69 (2001).
[Crossref]

Mittleman, D. M.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 5659 (2006).
[Crossref]

Mizeikis, V.

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and Characterization of Photonic Crystals,” J. Photochem. Photobiol. C 2, 35–69 (2001).
[Crossref]

Mondia, J. P.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Mugnier, J. D. J.

S. Juodkazis, E. Bernstein, J.-C Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method,” Thin Solid Films 322, 238–244 (1998).
[Crossref]

S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide,” Opt. Commun. 148, 242–248 (1998).
[Crossref]

Nishijima, Y.

Y. Nishijima, et al, to be published (2007).

Ozaki, M.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Ozin, G. A.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Pagnoux, D.

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Petersen, J.

Plenet, J.-C

S. Juodkazis, E. Bernstein, J.-C Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method,” Thin Solid Films 322, 238–244 (1998).
[Crossref]

Plenet, J.-C.

S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide,” Opt. Commun. 148, 242–248 (1998).
[Crossref]

Prasad, T.

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 5659 (2006).
[Crossref]

Rabinovich, E. M.

D. L. Wood, E. M. Rabinovich, J. D.W. Johnson, J. B. MacChesney, and E. M. Vogel, “Preparation of high-silica glasses from colloidal gels: III Infrared spectrophotometric studies,” J. Am. Ceram. Soc. 66, 693 – 699 (1983).
[Crossref]

Ritari, T.

Romanov, S. G.

J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
[Crossref] [PubMed]

Roy, P.

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Sakka, S.

S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6, 145 – 162 (1971).
[Crossref]

Satoh, S.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Schroden, R. C.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mat. 14, 3305–3315 (2002).
[Crossref]

Shimoda, T.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Shin, K.

A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.

Sigalas, M.

Simonsen, H.

Sørensen, T.

Stein, A.

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mat. 14, 3305–3315 (2002).
[Crossref]

Tamura, T.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Torres, C. M. S.

J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
[Crossref] [PubMed]

Tuominen, J.

Vaitkus, J. V.

S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide,” Opt. Commun. 148, 242–248 (1998).
[Crossref]

S. Juodkazis, E. Bernstein, J.-C Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method,” Thin Solid Films 322, 238–244 (1998).
[Crossref]

Vogel, E. M.

D. L. Wood, E. M. Rabinovich, J. D.W. Johnson, J. B. MacChesney, and E. M. Vogel, “Preparation of high-silica glasses from colloidal gels: III Infrared spectrophotometric studies,” J. Am. Ceram. Soc. 66, 693 – 699 (1983).
[Crossref]

Vuckovic, J.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).

Wood, D. L.

D. L. Wood, E. M. Rabinovich, J. D.W. Johnson, J. B. MacChesney, and E. M. Vogel, “Preparation of high-silica glasses from colloidal gels: III Infrared spectrophotometric studies,” J. Am. Ceram. Soc. 66, 693 – 699 (1983).
[Crossref]

Xia, Y.

H. Fudouzi and Y. Xia, “Photonic papers and inks: color writing with colorless materials,” Adv. Mater. 15, 892–896 (2003).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Ye, J.

J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
[Crossref] [PubMed]

Yoshino, K.

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Zentel, R.

J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
[Crossref] [PubMed]

Adv. Mater. (1)

H. Fudouzi and Y. Xia, “Photonic papers and inks: color writing with colorless materials,” Adv. Mater. 15, 892–896 (2003).
[Crossref]

Appl. Phys. Lett. (1)

S. Matsuo, T. Fujine, K. Fukuda, S. Juodkazis, and H. Misawa, “Formation of free-standing micro-pyramid colloidal crystals grown on silicon substrate,” Appl. Phys. Lett. 82, 4283–4285 (2003).
[Crossref]

Chem. Mat. (1)

R. C. Schroden, M. Al-Daous, C. F. Blanford, and A. Stein, “Optical properties of inverse opal photonic crystals,” Chem. Mat. 14, 3305–3315 (2002).
[Crossref]

J. Am. Ceram. Soc. (1)

D. L. Wood, E. M. Rabinovich, J. D.W. Johnson, J. B. MacChesney, and E. M. Vogel, “Preparation of high-silica glasses from colloidal gels: III Infrared spectrophotometric studies,” J. Am. Ceram. Soc. 66, 693 – 699 (1983).
[Crossref]

J. Non-Cryst. Solids (1)

S. Sakka and J. D. Mackenzie, “Relation between apparent glass transition temperature and liquids temperature for inorganic glasses,” J. Non-Cryst. Solids 6, 145 – 162 (1971).
[Crossref]

J. Photochem. Photobiol. C (1)

V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, and H. Misawa, “Tailoring and Characterization of Photonic Crystals,” J. Photochem. Photobiol. C 2, 35–69 (2001).
[Crossref]

Langmuir (1)

J. Ye, R. Zentel, S. Arpiainen, J. Ahopelto, F. Jonsson, S. G. Romanov, and C. M. S. Torres, “Integration of self assembled three-dimensional photonic crystals onto structured silicon wafers,” Langmuir 22, 7378–7383 (2006). URL http://dx.doi.org/10.1021/la0607611.
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

M. C. Phan Huy, G. Laffort, Y. Frignac, V. Dewynter-Marty, P. Ferdinand, P. Roy, J-M. Blondy, D. Pagnoux, W. Blanc, and B. Dussardier “Fibre Bragg grating photowriting in microstructured optical fibres for refractive index measurement.” Meas. Sci. Technol. 17, 992–997 (2006).
[Crossref]

Nature (2)

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389, 829 (2003).

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. Jhon, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature 405, 437–440 (2000)
[Crossref] [PubMed]

Opt. Commun. (1)

S. Juodkazis, E. Bernstein, J.-C. Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Optical Properties of CdS Nanocrystallites Embedded in (Si0.2Ti0.8)O2 Sol-Gel Waveguide,” Opt. Commun. 148, 242–248 (1998).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (1)

T. Prasad, D. M. Mittleman, and V. L. Colvin, “A photonic crystal sensor based on the superprism effect,” Opt. Mater. 29, 5659 (2006).
[Crossref]

Phys. Rev. Lett. (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Synthetic Met. (1)

K. Yoshino, S. Satoh, T. Shimoda, H. Kajii, T. Tamura, Y. Kawagishi, T. Matsui, R. Hidayat, A. Fujii, and M. Ozaki “Tunable optical properties of conducting polymers infiltrated in synthetic opal as photonic crystal” Synthetic Met. 121, 1459–1462 (2001).
[Crossref]

Thin Solid Films (1)

S. Juodkazis, E. Bernstein, J.-C Plenet, C. Bovier, J. D. J. Mugnier, and J. V. Vaitkus, “Waveguiding properties of CdS-doped (Si0.2Ti0.8)O2 films prepared by sol-gel method,” Thin Solid Films 322, 238–244 (1998).
[Crossref]

Other (3)

Y. Nishijima, et al, to be published (2007).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, 1995).

A. Baryshev, R. Fujikawa, A. Khanikaev, A. Granovsky, K. Shin, P. Lim, and M. Inoue, “Mesoporous photonic crystals for sensor applications,” in Proceedings of the SPIE, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications IIH. H. Du and R. Bise, eds., (2006), pp. 63690B.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic explanation of centrifuged sedimentation process. Glass substrates are mounted in cylindrical pits of the sample holders containing about 0.2 ml of colloidal microspheres suspension, and sealed at the top by glass slides (a), the sample holders are placed at the bottom of larger hollow cylindrical holders (indicated by black rectangles), which are attached to the axle of the centrifuge by swivel-mounts, and are oriented vertically by the gravity force when the centrifuge is at standstill (b), when the centrifuge is turned on, centrifugal forces overcome the gravity, aligning the holders horizontally, and govern sedimentation from the colloidal suspension in the sample holders (c), after the centrifugation the cylindrical holders realign vertically, a film of synthetic opal having uniform thickness is obtained on the glass substrate (d).

Fig. 2.
Fig. 2.

SEM images of (111) surface of polystyrene direct opal PhC structure with sphere diameter of 220 nm (a), and of a similar structure after its inversion by silica (b).

Fig. 3.
Fig. 3.

Optical and IR reflectivities of direct of polystyrene opal (a) and inverse silica opal (b) PhC structures in air, and summary of the dependence of the peak wavelength λ c on the sphere diameter (c) for opal and inverse opal structures. Total thickness of the structures is 100 μm. Relative statistical variations of λc values are less than 1%.

Fig. 4.
Fig. 4.

Reflection spectra of direct (a) and inverse (b) opal structures with the same sphere diameter of 520 nm diameter in air (n = 1.0) and in liquid solutions having refractive index in the range from 1.24 to 1.42. The spectra were normalized to peak reflectivities of the respective samples in air.

Fig. 5.
Fig. 5.

Measured wavelength of PSG peaks versus refractive index of the environment in direct (a) and inverse (b) opal structures for different sphere diameters. The measured data are represented by symbols; the lines are linear fits to the experimental dependencies. Relative statistical variations of λc values are less than 1%.

Fig. 6.
Fig. 6.

Normalized magnitudes of reflection peaks versus the refractive index for direct and inverse opal structures. The particle diameters are: ◆ 220, ■ 320, ▲ 400, ▼ 520, and ● 600 nm.

Fig. 7.
Fig. 7.

Differential reflectance spectra for inverse (a) and direct (b) opal structures with sphere radius d = 520 nm, infiltrated by solutions of FC72 (n =1.24) and FC77 (n =1.26). In both panels the insets show the original reflectivities from Fig. 4.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ c = 2 d 2 3 [ f sph n sph 2 + ( 1 f sph ) n bg 2 ]

Metrics