Abstract

We report on the generation of narrowband photon pairs at telecommunication wavelengths using a periodically poled lithium niobate waveguide that utilizes the nonlinear tensor element d 24 for type-II quasi phase matching. The FWHM bandwidth of the spontaneous parametric downconversion was 1 nm. The brightness of the photon pair source was ∼6×105/s/GHz when the pump power was 1 mW. The indistinguishability of the signal and idler photons generated by the degenerate spontaneous parametric downconversion process was studied in a Hong-Ou-Mandel type interference experiment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  2. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental nonlocality proof of quantum teleportation and entanglement swapping," Phys. Rev. Lett. 88, 017903.1-017903.4 (1998).
  3. D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
    [CrossRef]
  4. P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
    [CrossRef] [PubMed]
  5. A. Yoshizawa, R. Kaji and H. Tsuchida, "Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides," Jpn. J. Appl. Phys. 42, 5652-5653 (2003).
    [CrossRef]
  6. H. de Riedmatten, I. Marcikic. W. Tittel, H. Zbinden and N. Gisin, "Quantum interference with photon pairs created in spatially separated source," Phys. Rev. A. 67, 022301.1-022301.5 (2003).
    [CrossRef]
  7. C. K. Hong, Z. Y. Ou and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
    [CrossRef] [PubMed]
  8. H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, "Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol.%MgO," Appl. Opt. 31, 6695-6697 (1992).
    [CrossRef] [PubMed]
  9. T. Suhara and H. Kintaka, "Quantum theory analysis of twin-photon beams generated by parametric fluorescence," IEEE Quantum Electron. 41, 1203-1205 (2005).
    [CrossRef]
  10. M. Motoya, S. Kurimura, S. Inoue, Y. Usui and H. Nakajima, "Type II quasi-phase matching in waveguide parametric down converter for quantum information technologies," Conference on Lasers and ElectroOptics, Long Beach, USA (2006), CMB5.
  11. N. Namekata, Y. Makino and S. Inoue, "Single-photon detector for long-distance fiber-optic quantum key distribution," Opt. Lett. 27, 954-956 (2002).
    [CrossRef]
  12. S. Mori, J. Soderholm, N. Namekata and S. Inoue, "On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide," Opt. Com. 264, 156-162 (2006).
    [CrossRef]
  13. H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).
  14. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNb3 waveguide," Opt. Lett. 30, 1725, (2005)
    [CrossRef] [PubMed]
  15. R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at 1550 nm with twin superconducting single-photon detector,"Appl. Phys. Lett. 89, 241129.1-241129.3 (2006)
    [CrossRef]

2006 (1)

S. Mori, J. Soderholm, N. Namekata and S. Inoue, "On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide," Opt. Com. 264, 156-162 (2006).
[CrossRef]

2005 (2)

2004 (1)

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).

2003 (1)

A. Yoshizawa, R. Kaji and H. Tsuchida, "Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides," Jpn. J. Appl. Phys. 42, 5652-5653 (2003).
[CrossRef]

2002 (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

N. Namekata, Y. Makino and S. Inoue, "Single-photon detector for long-distance fiber-optic quantum key distribution," Opt. Lett. 27, 954-956 (2002).
[CrossRef]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

1992 (1)

1987 (1)

C. K. Hong, Z. Y. Ou and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Ac’ýn, A.

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental nonlocality proof of quantum teleportation and entanglement swapping," Phys. Rev. Lett. 88, 017903.1-017903.4 (1998).

de Riedmatten, H.

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).

H. de Riedmatten, I. Marcikic. W. Tittel, H. Zbinden and N. Gisin, "Quantum interference with photon pairs created in spatially separated source," Phys. Rev. A. 67, 022301.1-022301.5 (2003).
[CrossRef]

Diamanti, E.

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

Fejer, M. M.

Gisin, N.

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Habif, J. L.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at 1550 nm with twin superconducting single-photon detector,"Appl. Phys. Lett. 89, 241129.1-241129.3 (2006)
[CrossRef]

Hadfield, R. H.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at 1550 nm with twin superconducting single-photon detector,"Appl. Phys. Lett. 89, 241129.1-241129.3 (2006)
[CrossRef]

Hong, C. K.

C. K. Hong, Z. Y. Ou and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Inoue, S.

Kaji, R.

A. Yoshizawa, R. Kaji and H. Tsuchida, "Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides," Jpn. J. Appl. Phys. 42, 5652-5653 (2003).
[CrossRef]

Kintaka, H.

T. Suhara and H. Kintaka, "Quantum theory analysis of twin-photon beams generated by parametric fluorescence," IEEE Quantum Electron. 41, 1203-1205 (2005).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Langrock, C.

Lin, W. X.

Makino, Y.

Mandel, L.

C. K. Hong, Z. Y. Ou and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Marcikic, I.

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).

H. de Riedmatten, I. Marcikic. W. Tittel, H. Zbinden and N. Gisin, "Quantum interference with photon pairs created in spatially separated source," Phys. Rev. A. 67, 022301.1-022301.5 (2003).
[CrossRef]

Mattel, K.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Mattele, K.

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

Mori, S.

S. Mori, J. Soderholm, N. Namekata and S. Inoue, "On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide," Opt. Com. 264, 156-162 (2006).
[CrossRef]

Nam, S. W.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at 1550 nm with twin superconducting single-photon detector,"Appl. Phys. Lett. 89, 241129.1-241129.3 (2006)
[CrossRef]

Namekata, N.

Ou, Z. Y.

C. K. Hong, Z. Y. Ou and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental nonlocality proof of quantum teleportation and entanglement swapping," Phys. Rev. Lett. 88, 017903.1-017903.4 (1998).

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Roussev, R. V.

Scarani, V.

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).

Schlafer, J.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at 1550 nm with twin superconducting single-photon detector,"Appl. Phys. Lett. 89, 241129.1-241129.3 (2006)
[CrossRef]

Schwall, R. E.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at 1550 nm with twin superconducting single-photon detector,"Appl. Phys. Lett. 89, 241129.1-241129.3 (2006)
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Shen, H. Y.

Shih, Y.

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Suhara, T.

T. Suhara and H. Kintaka, "Quantum theory analysis of twin-photon beams generated by parametric fluorescence," IEEE Quantum Electron. 41, 1203-1205 (2005).
[CrossRef]

Takesue, H.

Tittel, W.

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Tsuchida, H.

A. Yoshizawa, R. Kaji and H. Tsuchida, "Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides," Jpn. J. Appl. Phys. 42, 5652-5653 (2003).
[CrossRef]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental nonlocality proof of quantum teleportation and entanglement swapping," Phys. Rev. Lett. 88, 017903.1-017903.4 (1998).

Wu, R. F.

Xu, G. F.

Xu, H.

Yamamoto, Y.

Yoshizawa, A.

A. Yoshizawa, R. Kaji and H. Tsuchida, "Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides," Jpn. J. Appl. Phys. 42, 5652-5653 (2003).
[CrossRef]

Zbinden, H.

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Zeilinger, A.

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental nonlocality proof of quantum teleportation and entanglement swapping," Phys. Rev. Lett. 88, 017903.1-017903.4 (1998).

Zeng, Z. D.

Appl. Opt. (1)

IEEE Quantum Electron. (1)

T. Suhara and H. Kintaka, "Quantum theory analysis of twin-photon beams generated by parametric fluorescence," IEEE Quantum Electron. 41, 1203-1205 (2005).
[CrossRef]

J. Mod. Opt. (1)

H. de Riedmatten, V. Scarani, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).

Jpn. J. Appl. Phys. (1)

A. Yoshizawa, R. Kaji and H. Tsuchida, "Two-photon interference at 1550nm using two periodically poled lithium niobate waveguides," Jpn. J. Appl. Phys. 42, 5652-5653 (2003).
[CrossRef]

Nature (1)

D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature 390, 575-579 (1997).
[CrossRef]

Opt. Com. (1)

S. Mori, J. Soderholm, N. Namekata and S. Inoue, "On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide," Opt. Com. 264, 156-162 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

C. K. Hong, Z. Y. Ou and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattel, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Other (4)

J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, "Experimental nonlocality proof of quantum teleportation and entanglement swapping," Phys. Rev. Lett. 88, 017903.1-017903.4 (1998).

H. de Riedmatten, I. Marcikic. W. Tittel, H. Zbinden and N. Gisin, "Quantum interference with photon pairs created in spatially separated source," Phys. Rev. A. 67, 022301.1-022301.5 (2003).
[CrossRef]

M. Motoya, S. Kurimura, S. Inoue, Y. Usui and H. Nakajima, "Type II quasi-phase matching in waveguide parametric down converter for quantum information technologies," Conference on Lasers and ElectroOptics, Long Beach, USA (2006), CMB5.

R. H. Hadfield, J. L. Habif, J. Schlafer, R. E. Schwall, and S. W. Nam, "Quantum key distribution at 1550 nm with twin superconducting single-photon detector,"Appl. Phys. Lett. 89, 241129.1-241129.3 (2006)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Comparisons between the SPDC bandwidths of type-0 and type-IIQPM devices. The dashed and solid lines show the numerical results using Eqs. (1)(3). (a) the phase mismatch parameters as functions of the pump wavelength. (b) the SPDC bandwidths as functions of the interaction length.

Fig. 2.
Fig. 2.

Experimental setup to measure the generation rate of photon pairs. L: lenses, IF: interference filter, PBS: polarizing beamspliter, SMF: single-mode fiber, Disc.: Discriminator, D1,2: single-photon detectors, S1,2: single-count rate at D1,2, RC: coincidence-counts per second.

Fig. 3.
Fig. 3.

Comparison between the measured spectra of the photon pairs generated by the two different types of QPM devices. The gray and black lines show the spectra of the photon pairs generated by the type-0 and type-II QPM devices, respectively.

Fig. 4.
Fig. 4.

Experimental and theoretical coincidence-count rates. The filled circles show the measured values of the coincidence-count rates, and the solid line shows the theoretical curve.

Fig. 5.
Fig. 5.

Schematic diagram of the HOM type interference experiment. HWP1,2; half-wave plate, CR; corner reflector, PMF; polarization maintaining fiber, PMFC; polarization maintaining 50/50 fiber coupler.

Fig. 6.
Fig. 6.

Experimental results of a Hong-Ou-Mandel type interference experiment. The circles and squares show the measured values of the coincidence-counts and single-counts, respectively as functions of the relative delay between the signal and idler photons. The solid line shows the theoretical curve derived from Eq. (5).

Tables (1)

Tables Icon

Table 1. Measured brightness of the type-0 and type-II QPM devices when the pump power was 1 mW.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 λ 3 = 1 λ 1 + 1 λ 2 .
Δ = π [ n 3 λ 3 ( n 1 λ 1 + n 2 λ 2 + 1 Λ ) ] ,
P ω 1 sinh ( l ( ω 1 ω 2 ) κ 2 P 3 Δ 2 ) l ( ω 1 ω 2 ) κ 2 P 3 Δ 2 2 d ω 2 ,
N c = C [ 1 V HOM e ( Δωδτ ) 2 ] ,
N cd = C 0 ( n 3 + n 2 ) l 2 c { 1 ( 2 c n 3 + n 2 ) Lt p } 2 [ 1 e { Δ ω ( δτ 2 ( n 3 n 2 ) n 3 + n 2 t p ) } 2 ] dt p ,

Metrics