Abstract

Second-harmonic generation was phase-matched at the fundamental wavelength of 10.6 μm in an annealed ZnGeP2 crystal at room temperature. Our results demonstrated that the phase-matching angle was decreased with increasing the pump power. Such a unique dependence resulted in a significant enhancement on the second-harmonic output power. The highest average output power at 5.3 μm was 55 mW for an average pump power of 5.0 W, which corresponded to a conversion efficiency of 1.1%. Due to the laser-induced heating effect, the second-harmonic output power was increased by 65%. Such an efficient conversion was made possible also by using a short-pulse repetition-frequency-excited waveguide and single-longitudinal-mode CO2 laser as a fundamental beam.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Suhre, N. B. Singh, V. Balakrishna, N. C. Fernelius, and F. K. Hopkins, "Improved crystal quality and harmonic generation in GaSe doped with indium," Opt. Lett. 22, 775-777 (1997).
    [CrossRef] [PubMed]
  2. G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
    [CrossRef]
  3. N. Menyuk, G. W. Iseler, and A. Mooradian, "High-efficiency high-average-power second-harmonic generation with CdGeAs2," Appl. Phys. Lett. 29, 422-424 (1971).
    [CrossRef]
  4. A. Harasaki and K. Kato, "New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2," Jpn. J. Appl. Phys. 36, 700-703 (1997).
    [CrossRef]
  5. R. Eckardt, Y. Fan, R. Byer, R. Route, R. Feigeison, and J. Laan, "Efficient second harmonic generation of 10- µm radiation in AgGaSe2," Appl. Phys. Lett. 47, 786-788 (1985).
    [CrossRef]
  6. P. B. Phua, B. S. Tan, R. F. Wu, K. S. Lai, L. Chia, and E. Lau, "High-average-power mid-infrared ZnGeP2 optical parametric oscillators with a wavelength-dependent polarization rotator," Opt. Lett. 31, 489-491 (2006).
    [CrossRef] [PubMed]
  7. Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
    [CrossRef]
  8. G. D. Boyd and F. G. Stortz, "Linear and nonlinear optical properties of ZnGeP2 and CdSe," Appl. Phys. Lett. 18, 301-303 (1971).
    [CrossRef]
  9. G. C. Bhar and G. C. Ghosh, "Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2," IEEE J. Quantum Electron. 16, 838-843 (1980).
    [CrossRef]
  10. F. Madarasz, J. Dimmock, D. Dietz, and K. Bachmann, "Sellmeier paprameters for ZnGeP2 and GaP," J. Appl. Phys. 87, 1564-1565 (2000).
    [CrossRef]
  11. K. Kato, E. Takaoka, and N. Umemura, "New sellmeier and thermo-optic dispersion formulas for ZnGeP2," CLEO 2003, paper CtuM17.
  12. K. Kato, "Second-harmonic and sum-frequency generation in ZnGeP2," Appl. Opt. 36, 2506-2510 (1997).
    [CrossRef] [PubMed]
  13. S. Das, G. Bhar, S. Gangopadhyay, and C. Ghosh, "Linear and nonlinear optical properties of ZngeP2 crystal for infrared laser device applications: revisited," Appl. Opt. 42, 4335-4340 (2003).
    [CrossRef] [PubMed]
  14. D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, "Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide form 2 to 9 µm with implications for phase matching in optical frequency-conversion devices," J. Opt. Soc. Am. B 18, 1307-1310 (2001).
    [CrossRef]
  15. W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
    [CrossRef]
  16. G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, "Tunable parametric ZnGeP2 crystal oscillator," Sov. J. Quantum Electron. 17, 860-861 (1987).
    [CrossRef]
  17. V. G. Dmitriviev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1997), p. 50.
  18. X. Mu and Y. J. Ding, "Optical-parametric generation and oscillation in periodically-poled lithium niobate in the presence of strong two-photon absorption," Opt. Commun. 242, 305-312 (2004).
    [CrossRef]

2006 (1)

2004 (2)

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

X. Mu and Y. J. Ding, "Optical-parametric generation and oscillation in periodically-poled lithium niobate in the presence of strong two-photon absorption," Opt. Commun. 242, 305-312 (2004).
[CrossRef]

2003 (1)

2001 (1)

2000 (1)

F. Madarasz, J. Dimmock, D. Dietz, and K. Bachmann, "Sellmeier paprameters for ZnGeP2 and GaP," J. Appl. Phys. 87, 1564-1565 (2000).
[CrossRef]

1997 (3)

1989 (1)

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

1987 (2)

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, "Tunable parametric ZnGeP2 crystal oscillator," Sov. J. Quantum Electron. 17, 860-861 (1987).
[CrossRef]

1985 (1)

R. Eckardt, Y. Fan, R. Byer, R. Route, R. Feigeison, and J. Laan, "Efficient second harmonic generation of 10- µm radiation in AgGaSe2," Appl. Phys. Lett. 47, 786-788 (1985).
[CrossRef]

1980 (1)

G. C. Bhar and G. C. Ghosh, "Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2," IEEE J. Quantum Electron. 16, 838-843 (1980).
[CrossRef]

1971 (2)

N. Menyuk, G. W. Iseler, and A. Mooradian, "High-efficiency high-average-power second-harmonic generation with CdGeAs2," Appl. Phys. Lett. 29, 422-424 (1971).
[CrossRef]

G. D. Boyd and F. G. Stortz, "Linear and nonlinear optical properties of ZnGeP2 and CdSe," Appl. Phys. Lett. 18, 301-303 (1971).
[CrossRef]

Abdullaev, G. B.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Allakhverdiev, K. R.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Andreev, Yu. M.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Bachmann, K.

F. Madarasz, J. Dimmock, D. Dietz, and K. Bachmann, "Sellmeier paprameters for ZnGeP2 and GaP," J. Appl. Phys. 87, 1564-1565 (2000).
[CrossRef]

Balakrishna, V.

Baranov, V. Yu.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Bhar, G.

Bhar, G. C.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, "Tunable parametric ZnGeP2 crystal oscillator," Sov. J. Quantum Electron. 17, 860-861 (1987).
[CrossRef]

G. C. Bhar and G. C. Ghosh, "Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2," IEEE J. Quantum Electron. 16, 838-843 (1980).
[CrossRef]

Boyd, G. D.

G. D. Boyd and F. G. Stortz, "Linear and nonlinear optical properties of ZnGeP2 and CdSe," Appl. Phys. Lett. 18, 301-303 (1971).
[CrossRef]

Bribenyukov, A. I.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Byer, R.

R. Eckardt, Y. Fan, R. Byer, R. Route, R. Feigeison, and J. Laan, "Efficient second harmonic generation of 10- µm radiation in AgGaSe2," Appl. Phys. Lett. 47, 786-788 (1985).
[CrossRef]

Chapliev, N. I.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Chia, L.

Das, S.

S. Das, G. Bhar, S. Gangopadhyay, and C. Ghosh, "Linear and nonlinear optical properties of ZngeP2 crystal for infrared laser device applications: revisited," Appl. Opt. 42, 4335-4340 (2003).
[CrossRef] [PubMed]

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, "Tunable parametric ZnGeP2 crystal oscillator," Sov. J. Quantum Electron. 17, 860-861 (1987).
[CrossRef]

Dietz, D.

F. Madarasz, J. Dimmock, D. Dietz, and K. Bachmann, "Sellmeier paprameters for ZnGeP2 and GaP," J. Appl. Phys. 87, 1564-1565 (2000).
[CrossRef]

Dimmock, J.

F. Madarasz, J. Dimmock, D. Dietz, and K. Bachmann, "Sellmeier paprameters for ZnGeP2 and GaP," J. Appl. Phys. 87, 1564-1565 (2000).
[CrossRef]

Ding, Y. J.

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

X. Mu and Y. J. Ding, "Optical-parametric generation and oscillation in periodically-poled lithium niobate in the presence of strong two-photon absorption," Opt. Commun. 242, 305-312 (2004).
[CrossRef]

Eckardt, R.

R. Eckardt, Y. Fan, R. Byer, R. Route, R. Feigeison, and J. Laan, "Efficient second harmonic generation of 10- µm radiation in AgGaSe2," Appl. Phys. Lett. 47, 786-788 (1985).
[CrossRef]

Fan, Y.

R. Eckardt, Y. Fan, R. Byer, R. Route, R. Feigeison, and J. Laan, "Efficient second harmonic generation of 10- µm radiation in AgGaSe2," Appl. Phys. Lett. 47, 786-788 (1985).
[CrossRef]

Feigeison, R.

R. Eckardt, Y. Fan, R. Byer, R. Route, R. Feigeison, and J. Laan, "Efficient second harmonic generation of 10- µm radiation in AgGaSe2," Appl. Phys. Lett. 47, 786-788 (1985).
[CrossRef]

Fernelius, N. C.

Gangopadhyay, S.

Geiko, P. P.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Ghosh, C.

Ghosh, D. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, "Tunable parametric ZnGeP2 crystal oscillator," Sov. J. Quantum Electron. 17, 860-861 (1987).
[CrossRef]

Ghosh, G. C.

G. C. Bhar and G. C. Ghosh, "Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2," IEEE J. Quantum Electron. 16, 838-843 (1980).
[CrossRef]

Hanning, E. A.

Harasaki, A.

A. Harasaki and K. Kato, "New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2," Jpn. J. Appl. Phys. 36, 700-703 (1997).
[CrossRef]

Hopkins, F. K.

Iseler, G. W.

N. Menyuk, G. W. Iseler, and A. Mooradian, "High-efficiency high-average-power second-harmonic generation with CdGeAs2," Appl. Phys. Lett. 29, 422-424 (1971).
[CrossRef]

Izyumov, S. V.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Karasev, M. E.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Kato, K.

A. Harasaki and K. Kato, "New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2," Jpn. J. Appl. Phys. 36, 700-703 (1997).
[CrossRef]

K. Kato, "Second-harmonic and sum-frequency generation in ZnGeP2," Appl. Opt. 36, 2506-2510 (1997).
[CrossRef] [PubMed]

Konov, V. I.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Kozochkin, S. M.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Kulevskii, L. A.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Laan, J.

R. Eckardt, Y. Fan, R. Byer, R. Route, R. Feigeison, and J. Laan, "Efficient second harmonic generation of 10- µm radiation in AgGaSe2," Appl. Phys. Lett. 47, 786-788 (1985).
[CrossRef]

Lai, K. S.

Lau, E.

Madarasz, F.

F. Madarasz, J. Dimmock, D. Dietz, and K. Bachmann, "Sellmeier paprameters for ZnGeP2 and GaP," J. Appl. Phys. 87, 1564-1565 (2000).
[CrossRef]

Menyuk, N.

N. Menyuk, G. W. Iseler, and A. Mooradian, "High-efficiency high-average-power second-harmonic generation with CdGeAs2," Appl. Phys. Lett. 29, 422-424 (1971).
[CrossRef]

Mooradian, A.

N. Menyuk, G. W. Iseler, and A. Mooradian, "High-efficiency high-average-power second-harmonic generation with CdGeAs2," Appl. Phys. Lett. 29, 422-424 (1971).
[CrossRef]

Mu, X.

X. Mu and Y. J. Ding, "Optical-parametric generation and oscillation in periodically-poled lithium niobate in the presence of strong two-photon absorption," Opt. Commun. 242, 305-312 (2004).
[CrossRef]

Mustafaev, N. B.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Pashinin, P. P.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Phua, P. B.

Pis’mennyi, V. D.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Prokhorov, A. M.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Route, R.

R. Eckardt, Y. Fan, R. Byer, R. Route, R. Feigeison, and J. Laan, "Efficient second harmonic generation of 10- µm radiation in AgGaSe2," Appl. Phys. Lett. 47, 786-788 (1985).
[CrossRef]

Samanta, L. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, "Tunable parametric ZnGeP2 crystal oscillator," Sov. J. Quantum Electron. 17, 860-861 (1987).
[CrossRef]

Satov, Yu. A.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Schunemann, P. G.

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, "Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide form 2 to 9 µm with implications for phase matching in optical frequency-conversion devices," J. Opt. Soc. Am. B 18, 1307-1310 (2001).
[CrossRef]

Shi, W.

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

Singh, N. B.

Starodumov, Yu. M.

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Stortz, F. G.

G. D. Boyd and F. G. Stortz, "Linear and nonlinear optical properties of ZnGeP2 and CdSe," Appl. Phys. Lett. 18, 301-303 (1971).
[CrossRef]

Strel’tsov, A. P.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Suhre, D. R.

Tan, B. S.

Voevodin, V. G.

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

Wu, R. F.

Zelmon, D. E.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

R. Eckardt, Y. Fan, R. Byer, R. Route, R. Feigeison, and J. Laan, "Efficient second harmonic generation of 10- µm radiation in AgGaSe2," Appl. Phys. Lett. 47, 786-788 (1985).
[CrossRef]

N. Menyuk, G. W. Iseler, and A. Mooradian, "High-efficiency high-average-power second-harmonic generation with CdGeAs2," Appl. Phys. Lett. 29, 422-424 (1971).
[CrossRef]

G. D. Boyd and F. G. Stortz, "Linear and nonlinear optical properties of ZnGeP2 and CdSe," Appl. Phys. Lett. 18, 301-303 (1971).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. C. Bhar and G. C. Ghosh, "Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2," IEEE J. Quantum Electron. 16, 838-843 (1980).
[CrossRef]

J. Appl. Phys. (1)

F. Madarasz, J. Dimmock, D. Dietz, and K. Bachmann, "Sellmeier paprameters for ZnGeP2 and GaP," J. Appl. Phys. 87, 1564-1565 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

A. Harasaki and K. Kato, "New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2," Jpn. J. Appl. Phys. 36, 700-703 (1997).
[CrossRef]

Opt. Commun. (2)

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

X. Mu and Y. J. Ding, "Optical-parametric generation and oscillation in periodically-poled lithium niobate in the presence of strong two-photon absorption," Opt. Commun. 242, 305-312 (2004).
[CrossRef]

Opt. Lett. (2)

Sov. J. Quantum Electron. (3)

G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, "Efficient generation of the second harmonic of CO2 laser radition in a GaSe crystal," Sov. J. Quantum Electron. 19, 494-498 (1989).
[CrossRef]

Yu. M. Andreev, V. Yu. Baranov, V. G. Voevodin, P. P. Geiko, A. I. Bribenyukov, S. V. Izyumov, S. M. Kozochkin, V. D. Pis’mennyi, Yu. A. Satov, and A. P. Strel’tsov, "Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse," Sov. J. Quantum Electron. 17, 1435-1436 (1987).
[CrossRef]

G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, "Tunable parametric ZnGeP2 crystal oscillator," Sov. J. Quantum Electron. 17, 860-861 (1987).
[CrossRef]

Other (2)

V. G. Dmitriviev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1997), p. 50.

K. Kato, E. Takaoka, and N. Umemura, "New sellmeier and thermo-optic dispersion formulas for ZnGeP2," CLEO 2003, paper CtuM17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Spectrum of absorption coefficient of ZnGeP2 crystal determined from measurements of transmittances within 2-12 μm using FTIR. Inset: transmission spectrum measured on 14-mm-long ZnGeP2 crystal; dashed horizontal line represent transmittances limited by Fresnel-reflection losses.

Fig. 2.
Fig. 2.

Phase-matching angles measured at input power of fundamental beam: (a) 300 mW and (b) 5.0 W. Dots correspond to experimental data; solid curves correspond to fitting to data by using sinc2 function.

Fig. 3.
Fig. 3.

Temporal profiles of fundamental and SH pulses.

Fig. 4.
Fig. 4.

External (red dots) and internal (black squares) phase-matching angles versus input power of fundamental beam in the range from 150 mW to 5.0 W. Internal phase-matching angles were calculated using the Sellmeier equation taken from Ref. [10].

Fig. 5.
Fig. 5.

Smaller circle and dashed ellipse represent ordinary and extraordinary refractive indices for SH and fundamental beams. After crystal is heated up by laser beam, smaller circle and ellipse are enlarged. As illustrated here, phase-matching angle is therefore reduced.

Fig. 6.
Fig. 6.

Dots - output SH powers for different input powers of fundamental beam. Solid line -quadratic dependence predicted by theory. Dashed line - dependence of output SH power on input power modified by using phase-matching angles measured by us.

Fig. 7.
Fig. 7.

Curves - internal phase-matching (PM) angle vs. temperature of the crystal (bottom x axis), calculated based on five different sets of the Sellmeier equations: red - Ref. [13]; black - Ref. [12]; green - Ref. [11]; blue - Ref. [16]; and cyan - Ref. [10]. Black dots correspond to our measurement of internal PM angle vs. pump power (top x axis).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( d n o / d T ) 10.6 μ m = 15.40 × 10 5 K 1 ( d n e / d T ) 10.6 μ m = 16.84 × 10 5 K 1
( d n o / d T ) 5.3 μ m = 14.49 × 10 5 K 1 ( d n e / d T ) 5.3 μ m = 15.42 × 10 5 K 1
( Δ T ) max = α 1 P 1 T 1 τ 1 C p ρπ w 2
η = P 2 P 1 = 8 π 2 d eff 2 L 2 ε 0 c ( n e ω ) 2 n o 2 ω λ 2 2 P 1 π w 2 T 2 T 1 2 e α 1 L [ 1 exp ( Δ α L / 2 ) Δ α L / 2 ] 2

Metrics