Abstract

We report on the fabrication and characterization of integrated hollow waveguides cladded by gold-terminated, omnidirectional Bragg reflectors. The hollow waveguide channels were realized by the controlled formation of straight-sided delamination buckles within a multilayer thin film stack. An optimized process produced low-defect, straight-sided buckles with base widths from 10 to 80 μm, and corresponding peak core heights from ~0.7 to ~4 μm, on a single sample. The waveguides described have upper and lower cladding mirrors of 4 and 5.5 periods, respectively. Gold termination of the cladding reflectors significantly reduces the propagation loss of air-guided modes. The minimum propagation loss is less than 4 dB/cm in the near infrared, corresponding to upper and lower cladding reflectance of ~ 0.999. The main details of the guiding mechanism are well approximated by a simple ray-optics model.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
    [CrossRef]
  2. P. Rodgers, "Chip maker turns to self-assembly," Nature Nanotech. 2, 342 (2007).
    [CrossRef]
  3. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature 393, 146-149 (1998).
    [CrossRef]
  4. M.-W. Moon, K.-R. Lee, K.H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
    [CrossRef]
  5. Y. Sun, W.-M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics," Nature Nanotech. 1, 201-207 (2006).
    [CrossRef]
  6. A. Cho, "Pretty as you please, curling films turn themselves into nanodevices," Science 313, 164-165 (2006).
    [CrossRef] [PubMed]
  7. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, 077403-1-4 (2006).
    [CrossRef] [PubMed]
  8. R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, 091905-1-3 (2007).
    [CrossRef]
  9. E. P. Chan and A. J. Crosby, "Fabricating microlens arrays by surface wrinkling," Adv. Mater. 18, 3238-3242 (2006).
    [CrossRef]
  10. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, "Guided self-assembly of integrated hollow Bragg waveguides," Opt. Express 15, 3902-3915 (2007).
    [CrossRef] [PubMed]
  11. S.-S. Lo, M.-S. Wang, and C.-C. Chen, " Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express 12, 6589-6593 (2004).
    [CrossRef] [PubMed]
  12. F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn,  29, 9-19 (2006).
  13. H. Schmidt, Y. Dongliang, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. Quantum Electron. 11, 519-527 (2005).
    [CrossRef]
  14. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, "Microfluidic sensor based on integrated optical hollow waveguides," Opt. Lett. 29, 1894-1896 (2004).
    [CrossRef] [PubMed]
  15. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
    [CrossRef]
  16. Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
    [CrossRef]
  17. Y. Xu, A. Yariv, J. G. Fleming, and S.-Y. Lin, "Asymptotic analysis of silicon based Bragg fibers," Opt. Express 11, 1039-1049 (2003).
    [CrossRef] [PubMed]
  18. M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997).
    [CrossRef]
  19. T. Katagiri, Y. Matsuura, and M. Miyaga, "Metal covered photonic bandgap multilayer for infrared hollow waveguides," Appl. Opt. 41, 7603-7606 (2002).
    [CrossRef]
  20. H. C. Lin and K. Y. Cheng, "Fabrication of substrate-independent hybrid distributed Bragg reflectors using metallic wafer bonding," IEEE Photon. Technol. Lett. 16, 837-839 (2004).
    [CrossRef]
  21. J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
    [CrossRef]
  22. N. Ponnampalam and R. G. DeCorby, "Analysis and fabrication of hybrid metal-dielectric omnidirectional Bragg reflectors," submitted for publication.
  23. "Torlon AI-10 polymer application bulletin" (Solvay Advanced Polymers), www.solvayadvancedpolymers.com/static/wma/pdf/3/2/7/AI_10_APP_SAP.pdf.
  24. A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. In Phys. 40, 625-684 (1991).
    [CrossRef]
  25. T. J. Clement, N. Ponnampalam, H. T. Nguyen, and R. G. DeCorby, "Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique," Opt. Express 14, 1789-1796 (2006).
    [CrossRef] [PubMed]
  26. J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B. 24, 1942-1950 (2007).
    [CrossRef]
  27. R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005).
    [CrossRef] [PubMed]
  28. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
    [CrossRef]
  29. K. Suzuki, K. Ogusu, and M. Minakata, "Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices," Opt. Express 13, 8634-8641 (2005).
    [CrossRef] [PubMed]
  30. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]

2007 (4)

P. Rodgers, "Chip maker turns to self-assembly," Nature Nanotech. 2, 342 (2007).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, 091905-1-3 (2007).
[CrossRef]

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, "Guided self-assembly of integrated hollow Bragg waveguides," Opt. Express 15, 3902-3915 (2007).
[CrossRef] [PubMed]

J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B. 24, 1942-1950 (2007).
[CrossRef]

2006 (7)

T. J. Clement, N. Ponnampalam, H. T. Nguyen, and R. G. DeCorby, "Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique," Opt. Express 14, 1789-1796 (2006).
[CrossRef] [PubMed]

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn,  29, 9-19 (2006).

E. P. Chan and A. J. Crosby, "Fabricating microlens arrays by surface wrinkling," Adv. Mater. 18, 3238-3242 (2006).
[CrossRef]

Y. Sun, W.-M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics," Nature Nanotech. 1, 201-207 (2006).
[CrossRef]

A. Cho, "Pretty as you please, curling films turn themselves into nanodevices," Science 313, 164-165 (2006).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, 077403-1-4 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (6)

H. C. Lin and K. Y. Cheng, "Fabrication of substrate-independent hybrid distributed Bragg reflectors using metallic wafer bonding," IEEE Photon. Technol. Lett. 16, 837-839 (2004).
[CrossRef]

J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
[CrossRef]

S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, "Microfluidic sensor based on integrated optical hollow waveguides," Opt. Lett. 29, 1894-1896 (2004).
[CrossRef] [PubMed]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

S.-S. Lo, M.-S. Wang, and C.-C. Chen, " Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express 12, 6589-6593 (2004).
[CrossRef] [PubMed]

M.-W. Moon, K.-R. Lee, K.H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

2003 (2)

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

Y. Xu, A. Yariv, J. G. Fleming, and S.-Y. Lin, "Asymptotic analysis of silicon based Bragg fibers," Opt. Express 11, 1039-1049 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Katagiri, Y. Matsuura, and M. Miyaga, "Metal covered photonic bandgap multilayer for infrared hollow waveguides," Appl. Opt. 41, 7603-7606 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

1998 (2)

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998).
[CrossRef]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature 393, 146-149 (1998).
[CrossRef]

1997 (1)

M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997).
[CrossRef]

1991 (1)

A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. In Phys. 40, 625-684 (1991).
[CrossRef]

Akiyama, S.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Barber, J. P.

H. Schmidt, Y. Dongliang, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. Quantum Electron. 11, 519-527 (2005).
[CrossRef]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Bermel, P.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Bernini, R.

Bowden, N.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature 393, 146-149 (1998).
[CrossRef]

Brittain, S.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature 393, 146-149 (1998).
[CrossRef]

Campopiano, S.

Chan, E. P.

E. P. Chan and A. J. Crosby, "Fabricating microlens arrays by surface wrinkling," Adv. Mater. 18, 3238-3242 (2006).
[CrossRef]

Chen, C.-C.

Cheng, K. Y.

H. C. Lin and K. Y. Cheng, "Fabrication of substrate-independent hybrid distributed Bragg reflectors using metallic wafer bonding," IEEE Photon. Technol. Lett. 16, 837-839 (2004).
[CrossRef]

Chiang, K. S.

J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B. 24, 1942-1950 (2007).
[CrossRef]

Cho, A.

A. Cho, "Pretty as you please, curling films turn themselves into nanodevices," Science 313, 164-165 (2006).
[CrossRef] [PubMed]

Cho, W.

J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
[CrossRef]

Choi, W.-M.

Y. Sun, W.-M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics," Nature Nanotech. 1, 201-207 (2006).
[CrossRef]

Clement, T. J.

Crosby, A. J.

E. P. Chan and A. J. Crosby, "Fabricating microlens arrays by surface wrinkling," Adv. Mater. 18, 3238-3242 (2006).
[CrossRef]

DeCorby, R. G.

Deppe, D. G.

M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997).
[CrossRef]

Djurisic, A. B.

Dongliang, Y.

H. Schmidt, Y. Dongliang, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. Quantum Electron. 11, 519-527 (2005).
[CrossRef]

Duan, X.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Dwivedi, P. K.

Elazar, J. M.

Elliott, S. R.

A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. In Phys. 40, 625-684 (1991).
[CrossRef]

Evans, A. G.

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature 393, 146-149 (1998).
[CrossRef]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Fleming, J. G.

Gessmann, Th.

J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
[CrossRef]

Gill, W. N.

J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
[CrossRef]

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Hawkins, A. R.

H. Schmidt, Y. Dongliang, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. Quantum Electron. 11, 519-527 (2005).
[CrossRef]

Heitmann, D.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, 077403-1-4 (2006).
[CrossRef] [PubMed]

Heyn, Ch.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, 077403-1-4 (2006).
[CrossRef] [PubMed]

Huang, Y. Y.

Y. Sun, W.-M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics," Nature Nanotech. 1, 201-207 (2006).
[CrossRef]

Huffaker, D. L.

M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997).
[CrossRef]

Hutchinson, J. W.

M.-W. Moon, K.-R. Lee, K.H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature 393, 146-149 (1998).
[CrossRef]

Ibanescu, M.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

Jiang, H.

Y. Sun, W.-M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics," Nature Nanotech. 1, 201-207 (2006).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Johnson, S. G.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

Katagiri, T.

Kimerling, L. C.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Kipp, T.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, 077403-1-4 (2006).
[CrossRef] [PubMed]

Kolobov, A. V.

A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. In Phys. 40, 625-684 (1991).
[CrossRef]

Koyama, F.

F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn,  29, 9-19 (2006).

Lee, K.-R.

M.-W. Moon, K.-R. Lee, K.H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

Li, J.

J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B. 24, 1942-1950 (2007).
[CrossRef]

Lin, H. C.

H. C. Lin and K. Y. Cheng, "Fabrication of substrate-independent hybrid distributed Bragg reflectors using metallic wafer bonding," IEEE Photon. Technol. Lett. 16, 837-839 (2004).
[CrossRef]

Lin, S.-Y.

Lo, S.-S.

Majewski, M. L.

Matsuura, Y.

McDaniel, M. R.

M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997).
[CrossRef]

Mendach, S.

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, 091905-1-3 (2007).
[CrossRef]

Minakata, M.

Miura, T.

F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn,  29, 9-19 (2006).

Miyaga, M.

Moon, M.-W.

M.-W. Moon, K.-R. Lee, K.H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

Nguyen, H. T.

Ogusu, K.

Oh, K.H.

M.-W. Moon, K.-R. Lee, K.H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

Ojha, M.

J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
[CrossRef]

Pai, M. M.

Parviz, B. A.

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

Plawsky, J. L.

J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
[CrossRef]

Ponnampalam, N.

Povinelli, M. L.

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

Rakic, A. D.

Rastelli, A.

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, 091905-1-3 (2007).
[CrossRef]

Rodgers, P.

P. Rodgers, "Chip maker turns to self-assembly," Nature Nanotech. 2, 342 (2007).
[CrossRef]

Rogers, J. A.

Y. Sun, W.-M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics," Nature Nanotech. 1, 201-207 (2006).
[CrossRef]

Ryan, D.

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

Sakurai, Y.

F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn,  29, 9-19 (2006).

Sarro, P. M.

Schmidt, H.

H. Schmidt, Y. Dongliang, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. Quantum Electron. 11, 519-527 (2005).
[CrossRef]

Schmidt, O. G.

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, 091905-1-3 (2007).
[CrossRef]

Schubert, E. F.

J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
[CrossRef]

Songmuang, R.

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, 091905-1-3 (2007).
[CrossRef]

Strelow, Ch.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, 077403-1-4 (2006).
[CrossRef] [PubMed]

Sun, Y.

Y. Sun, W.-M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics," Nature Nanotech. 1, 201-207 (2006).
[CrossRef]

Suzuki, K.

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Wang, M.-S.

Welsch, H.

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, 077403-1-4 (2006).
[CrossRef] [PubMed]

Whitesides, G. M.

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature 393, 146-149 (1998).
[CrossRef]

Xi, J.-Q.

J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
[CrossRef]

Xu, Y.

Yariv, A.

Yi, Y.

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

Zeni, L.

Acta Mater. (1)

M.-W. Moon, K.-R. Lee, K.H. Oh, and J. W. Hutchinson, "Buckle delamination on patterned substrates," Acta Mater. 52, 3151-3159 (2004).
[CrossRef]

Adv. In Phys. (1)

A. V. Kolobov and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. In Phys. 40, 625-684 (1991).
[CrossRef]

Adv. Mater. (1)

E. P. Chan and A. J. Crosby, "Fabricating microlens arrays by surface wrinkling," Adv. Mater. 18, 3238-3242 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. Songmuang, A. Rastelli, S. Mendach, and O. G. Schmidt, "SiOx/Si radial superlattices and microtube optical ring resonators," Appl. Phys. Lett. 90, 091905-1-3 (2007).
[CrossRef]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett. 85, 1466-1468 (2004).
[CrossRef]

Electron. Commun. Jpn (1)

F. Koyama, T. Miura, and Y. Sakurai, "Tunable hollow waveguides and their applications for photonic integrated circuits," Electron. Commun. Jpn,  29, 9-19 (2006).

Electron. Lett. (1)

M. R. McDaniel, D. L. Huffaker, and D. G. Deppe, "Hybrid dielectric/metal reflector for low threshold vertical-cavity surface-emitting lasers," Electron. Lett. 33, 1704-1705 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Schmidt, Y. Dongliang, J. P. Barber, and A. R. Hawkins, "Hollow-core waveguides and 2-D waveguide arrays for integrated optics of gases and liquids," IEEE J. Sel. Top. Quantum Electron. 11, 519-527 (2005).
[CrossRef]

Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "Sharp bending of on-chip silicon Bragg cladding waveguide with light guiding in low index core materials," IEEE J. Sel. Top. Quantum Electron. 12, 1345-1348 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. C. Lin and K. Y. Cheng, "Fabrication of substrate-independent hybrid distributed Bragg reflectors using metallic wafer bonding," IEEE Photon. Technol. Lett. 16, 837-839 (2004).
[CrossRef]

IEEE Trans. Adv. Packaging (1)

B. A. Parviz, D. Ryan, and G. M. Whitesides, "Using self-assembly for the fabrication of nano-scale electronic and photonic devices," IEEE Trans. Adv. Packaging 26, 233-241 (2003).
[CrossRef]

Int. J. High Speed Electronics and Systems (1)

J.-Q. Xi, M. Ojha, W. Cho, Th. Gessmann, E. F. Schubert, J. L. Plawsky, and W. N. Gill, "Omni-directional reflector using a low refractive index material," Int. J. High Speed Electronics and Systems 14, 726-731 (2004).
[CrossRef]

J. Opt. Soc. Am. B. (1)

J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B. 24, 1942-1950 (2007).
[CrossRef]

Nature (2)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer," Nature 393, 146-149 (1998).
[CrossRef]

Nature Nanotech. (2)

P. Rodgers, "Chip maker turns to self-assembly," Nature Nanotech. 2, 342 (2007).
[CrossRef]

Y. Sun, W.-M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics," Nature Nanotech. 1, 201-207 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, "Optical modes in semiconductor microtube ring resonators," Phys. Rev. Lett. 96, 077403-1-4 (2006).
[CrossRef] [PubMed]

Science (1)

A. Cho, "Pretty as you please, curling films turn themselves into nanodevices," Science 313, 164-165 (2006).
[CrossRef] [PubMed]

Other (2)

N. Ponnampalam and R. G. DeCorby, "Analysis and fabrication of hybrid metal-dielectric omnidirectional Bragg reflectors," submitted for publication.

"Torlon AI-10 polymer application bulletin" (Solvay Advanced Polymers), www.solvayadvancedpolymers.com/static/wma/pdf/3/2/7/AI_10_APP_SAP.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The sequence of steps is shown for producing a buckled hollow waveguide with metal layers terminating the upper and lower cladding mirrors. Light and heat are applied after deposition of the multilayer, to drive the dissolution of Ag into adjacent IG2 films. The main modifications to the established process [10] are that a metal-coated silicon substrate is used as a base and that a capping metal layer is added following the formation of the hollow channels.

Fig. 2.
Fig. 2.

Digital camera images of a sample after the buckling process. (a) Low magnification photograph showing arrays of straight-sided buckles and 500 μm diameter microrings, after deposition of the upper Au layer. (b)-(c) Microscope images captured prior to deposition of the upper Au layer: (b) a pair of 500 μm diameter rings and (c) sections of 80 to 10 μm and 80 to 20 μm tapers. (d)-(e) Microscope images captured after deposition of the upper Au layer: (d) an array of 60 μm wide channels, with a single 40 and 80 μm channel also visible, and (e) s-bends in 80 μm wide channels. (f) Microscope image showing the facet (top view) of an array of 60 μm wide channels, cleaved after deposition of an epoxy overlayer.

Fig. 3.
Fig. 3.

Contact profilometer scans showing the approximate cross-section of the buckles. (a) Scans for nominally 10, 20, 40, 60, and 80 μm wide buckles. The flat top of the scans for the 10 and 20 μm wide buckles is an artifact due to the finite size of the profilometer tip, and is not present in AFM scans of the same buckles. (b) Scans for sets of 5 buckles, with nominal base width of 20 and 40 μm.

Fig. 4.
Fig. 4.

(a). AFM surface plot of a nominally 40 μm wide buckle. (b) SEM image (scale bar: 100 nm) showing the cleaved facet of a buckled multilayer (i.e. the upper mirror). Deformation of the PAI layers on cleaving obscures the IG2/PAI interfaces to some extent. The Au layer is visible as the bright line separating the last PAI layer from the epoxy overlayer.

Fig. 5.
Fig. 5.

A schematic illustration of the ray optics model for a slab hollow waveguide is shown. The structure is representative of the buckled waveguides with metal-terminated Bragg cladding mirrors.

Fig. 6.
Fig. 6.

Results of a ray-optics model for the propagation loss of the buckled hollow waveguides reported in [10]. (a) The effective reflectance of the upper mirror versus wavelength, for a TE polarized ray (solid blue line) and a TM polarized ray (dashed red line). Lossless dielectric layers were assumed. (b) As in (a), but for the bottom mirror. (c) Comparison of the predicted and measured (black dotted line) insertion loss versus wavelength for the TE case, for a hollow waveguide 0.5 cm in length and with peak core height 2.5 μm. The dash-dot blue line was obtained assuming lossless dielectric layers. The solid blue line was obtained assuming nonzero loss in the dielectric layers, as described in the main text.

Fig. 7.
Fig. 7.

Light guiding in a buckle waveguide with 60 μm base width, as imaged by an infrared camera. (a) A series of end facet images for light at 1320 nm, with slight adjustments in the input coupling position. (b)-(d) Top view images showing scattered/radiated light streaks for a waveguide of length ~1.2 cm: (b) TE polarized light at 1300 nm. (c) TM polarized light at 1480 nm. (d) TE polarized light at 1480 nm.

Fig. 8.
Fig. 8.

Plots in the top (middle) row show the predicted ray reflectance for the upper (lower) cladding mirror of a 60 μm wide waveguide. Plots in the bottom row show the loss predictions of the ray optics model alongside the experimental insertion loss (black dotted line). In all cases, the dash-dot lines correspond to an assumption of lossless dielectric layers, while the solid lines correspond to an assumption of non-zero dielectric loss (κp =10-4, κIU =3×10-4, as explained in the main text). (a) TE polarized light. (b) TM polarized light. The square symbols in the bottom plots indicate the loss estimated from scattered light decay at 1480 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ RAY ( λ 0 ) cos 1 ( λ 0 2 d ) ,
α ( 2.5 λ 0 d 2 ) log 10 ( R U R L ) ,

Metrics