Abstract

Based on plane wave expansion method, complete photonic band gaps (PBGs) of a woodpile three-dimensional (3-D) terahertz (THz) photonic crystal (PC) with face-centered-tetragonal (fct) symmetry are optimized by varying structural parameters and the highest band gap ratio can reach 26.71%. In order to further optimize the complete PBGs, we propose a novel woodpile lattice with comparatively decreased symmetry and the highest band gap ratio can be increased to 27.61%. The woodpile THz PCs with two different symmetries both have a wide range of filling ratios to gain high quality complete PBGs, making the manufacturing process convenient. Woodpile 3-D PCs will be very promising materials for THz functional components.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory and Tech. 50, 910-928 (2002).
    [CrossRef]
  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
    [CrossRef] [PubMed]
  3. N. Jukam, and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
    [CrossRef]
  4. S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003).
    [CrossRef]
  5. A. Di Falco, C. Conti, and G. Assanto, "Terahertz pulse generation via optical rectification in photonic crystal microcavities," Opt. Lett. 30, 1174-1176 (2005).
    [CrossRef] [PubMed]
  6. H. Kurt, and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
    [CrossRef]
  7. C. Lin, C. Chen, G. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. Prather, "Wavelength scale terahertz two-dimensional photonic crystal waveguides," Opt. Express 12, 5723-5728 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-23-5723.
    [CrossRef] [PubMed]
  8. T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
    [CrossRef]
  9. A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory and Tech. 49, 1254-1261 (2001).
    [CrossRef]
  10. A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, "Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies," Electron. Lett. 42, 32-33 (2006).
    [CrossRef]
  11. K. Takagi, K. Seno, and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
    [CrossRef]
  12. H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).
  13. S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Theoretical investigation of fabrication-related disorder on the properties of photonic crystals," J. Appl. Phys. 78, 1415-1418 (1995).
    [CrossRef]
  14. P. Kopperschmidt, "Tetragonal photonic woodpile structures," Appl. Phys. B 76, 729-734 (2003).
    [CrossRef]
  15. E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "Terahertz spectroscopy of three-dimensional photonic band-gap crystals," Opt. Lett. 19, 1155-1157 (1994).
    [PubMed]
  16. A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, "Terahertz characterisation of mechanically machined 3D photonic crystal," Electron. Lett. 33, 1981-1983 (1997).
    [CrossRef]
  17. A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
    [CrossRef]
  18. S. Shoji, H. B. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-610 (2003).
    [CrossRef]
  19. Y. Lin, D. Rivera, and K. P. Chen, "Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques," Opt. Express 14, 887-892 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-887.
    [CrossRef] [PubMed]
  20. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
    [CrossRef]
  21. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  22. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
    [CrossRef] [PubMed]
  23. C. M. Anderson, and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
    [CrossRef] [PubMed]

2006 (3)

A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, "Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies," Electron. Lett. 42, 32-33 (2006).
[CrossRef]

H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).

Y. Lin, D. Rivera, and K. P. Chen, "Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques," Opt. Express 14, 887-892 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-887.
[CrossRef] [PubMed]

2005 (2)

A. Di Falco, C. Conti, and G. Assanto, "Terahertz pulse generation via optical rectification in photonic crystal microcavities," Opt. Lett. 30, 1174-1176 (2005).
[CrossRef] [PubMed]

H. Kurt, and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

2004 (2)

2003 (6)

P. Kopperschmidt, "Tetragonal photonic woodpile structures," Appl. Phys. B 76, 729-734 (2003).
[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

S. Shoji, H. B. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-610 (2003).
[CrossRef]

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

N. Jukam, and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003).
[CrossRef]

2002 (2)

P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory and Tech. 50, 910-928 (2002).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

2001 (1)

A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory and Tech. 49, 1254-1261 (2001).
[CrossRef]

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

1997 (1)

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, "Terahertz characterisation of mechanically machined 3D photonic crystal," Electron. Lett. 33, 1981-1983 (1997).
[CrossRef]

1996 (1)

C. M. Anderson, and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
[CrossRef] [PubMed]

1995 (1)

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Theoretical investigation of fabrication-related disorder on the properties of photonic crystals," J. Appl. Phys. 78, 1415-1418 (1995).
[CrossRef]

1994 (2)

E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "Terahertz spectroscopy of three-dimensional photonic band-gap crystals," Opt. Lett. 19, 1155-1157 (1994).
[PubMed]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Anderson, C. M.

C. M. Anderson, and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
[CrossRef] [PubMed]

Arnold, J. M.

A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory and Tech. 49, 1254-1261 (2001).
[CrossRef]

Arsh, A.

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

Assanto, G.

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Bird, T. S.

A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, "Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies," Electron. Lett. 42, 32-33 (2006).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "Terahertz spectroscopy of three-dimensional photonic band-gap crystals," Opt. Lett. 19, 1155-1157 (1994).
[PubMed]

Blaikie, R. J.

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

Bloom, D. M.

Bostak, J.

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Chan, C. T.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Chelnokov, A.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, "Terahertz characterisation of mechanically machined 3D photonic crystal," Electron. Lett. 33, 1981-1983 (1997).
[CrossRef]

Chen, C.

Chen, K. P.

Chen, X. S.

S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003).
[CrossRef]

Chong, H. M. H.

A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory and Tech. 49, 1254-1261 (2001).
[CrossRef]

Citrin, D. S.

H. Kurt, and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

Conti, C.

Coutaz, J.-L.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, "Terahertz characterisation of mechanically machined 3D photonic crystal," Electron. Lett. 33, 1981-1983 (1997).
[CrossRef]

Cumming, D. R. S.

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

De Maagt, P.

A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory and Tech. 49, 1254-1261 (2001).
[CrossRef]

Di Falco, A.

Drysdale, T. D.

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

Duvillaret, L.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, "Terahertz characterisation of mechanically machined 3D photonic crystal," Electron. Lett. 33, 1981-1983 (1997).
[CrossRef]

Esselle, K. P.

A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, "Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies," Electron. Lett. 42, 32-33 (2006).
[CrossRef]

Fan, S. H.

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Theoretical investigation of fabrication-related disorder on the properties of photonic crystals," J. Appl. Phys. 78, 1415-1418 (1995).
[CrossRef]

Feigel, A.

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Giapis, K. P.

C. M. Anderson, and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
[CrossRef] [PubMed]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "Terahertz spectroscopy of three-dimensional photonic band-gap crystals," Opt. Lett. 19, 1155-1157 (1994).
[PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Theoretical investigation of fabrication-related disorder on the properties of photonic crystals," J. Appl. Phys. 78, 1415-1418 (1995).
[CrossRef]

Jukam, N.

N. Jukam, and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

Kawasaki, A.

K. Takagi, K. Seno, and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
[CrossRef]

Kawata, S.

S. Shoji, H. B. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-610 (2003).
[CrossRef]

Klebanov, M.

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Kopperschmidt, P.

P. Kopperschmidt, "Tetragonal photonic woodpile structures," Appl. Phys. B 76, 729-734 (2003).
[CrossRef]

Kurt, H.

H. Kurt, and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Li, E. B.

H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).

Li, Z. F.

S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003).
[CrossRef]

Lin, C.

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Lin, Y.

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Liu, H.

H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).

Lourtioz, J.-M.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, "Terahertz characterisation of mechanically machined 3D photonic crystal," Electron. Lett. 33, 1981-1983 (1997).
[CrossRef]

Lu, W.

S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003).
[CrossRef]

Lyubin, V.

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

Michel, E.

Özbay, E.

Prather, D.

Reynolds, A. L.

A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory and Tech. 49, 1254-1261 (2001).
[CrossRef]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Rivera, D.

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Rowson, S.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, "Terahertz characterisation of mechanically machined 3D photonic crystal," Electron. Lett. 33, 1981-1983 (1997).
[CrossRef]

Sanders, B. C.

A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, "Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies," Electron. Lett. 42, 32-33 (2006).
[CrossRef]

Schneider, G.

Seno, K.

K. Takagi, K. Seno, and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
[CrossRef]

Sfez, B.

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

Sharkawy, A.

Shen, X. C.

S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003).
[CrossRef]

Sherwin, M. S.

N. Jukam, and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

Shi, S.

Shoji, S.

S. Shoji, H. B. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-610 (2003).
[CrossRef]

Siegel, P. H.

P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory and Tech. 50, 910-928 (2002).
[CrossRef]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Sun, H. B.

S. Shoji, H. B. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-610 (2003).
[CrossRef]

Takagi, K.

K. Takagi, K. Seno, and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
[CrossRef]

Thayne, I. G.

A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory and Tech. 49, 1254-1261 (2001).
[CrossRef]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Tuttle, G.

Veinger, M.

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

Villeneuve, P. R.

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Theoretical investigation of fabrication-related disorder on the properties of photonic crystals," J. Appl. Phys. 78, 1415-1418 (1995).
[CrossRef]

Wang, P.

H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).

Wang, S. W.

S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003).
[CrossRef]

Weily, A. R.

A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, "Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies," Electron. Lett. 42, 32-33 (2006).
[CrossRef]

Wen, W. J.

S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003).
[CrossRef]

Wen, W. Q.

H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).

Yao, J. Q.

H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).

Yao, P.

Zhang, Q.

H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Acta Phys. Sin. (1)

H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).

Appl. Phys. B (1)

P. Kopperschmidt, "Tetragonal photonic woodpile structures," Appl. Phys. B 76, 729-734 (2003).
[CrossRef]

Appl. Phys. Lett. (6)

K. Takagi, K. Seno, and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004).
[CrossRef]

A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003).
[CrossRef]

S. Shoji, H. B. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-610 (2003).
[CrossRef]

N. Jukam, and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

H. Kurt, and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005).
[CrossRef]

T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003).
[CrossRef]

Electron. Lett. (2)

A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, "Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies," Electron. Lett. 42, 32-33 (2006).
[CrossRef]

A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, "Terahertz characterisation of mechanically machined 3D photonic crystal," Electron. Lett. 33, 1981-1983 (1997).
[CrossRef]

IEEE Trans. Microwave Theory and Tech. (2)

A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory and Tech. 49, 1254-1261 (2001).
[CrossRef]

P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory and Tech. 50, 910-928 (2002).
[CrossRef]

J. Appl. Phys. (2)

S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003).
[CrossRef]

S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Theoretical investigation of fabrication-related disorder on the properties of photonic crystals," J. Appl. Phys. 78, 1415-1418 (1995).
[CrossRef]

Nature (2)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

C. M. Anderson, and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett. 77, 2949-2952 (1996).
[CrossRef] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of woodpile 3-D lattice structures. (a) Diagram of a woodpile lattice with fct symmetry, which is made of layers of rectangular dielectric rods with a stacking sequence that is repeated every four layers with a repeat distance of c, corresponding to a single unit cell. (b) Diagram of a novel woodpile lattice structure. In a unit cell, the width of the rods of the first and third layers (w1 ) is not equal to the width of the rods of the second and fourth layers (w2 ). In Fig. 1(b), w2 >w1 .

Fig. 2.
Fig. 2.

Band gap diagrams for the woodpile PCs composed of Si rods piled up in an air background. (a) the variation of the complete PBGs with w. (b) the variation of the complete PBGs with w2 . (c) the variation of the complete PBGs with w1 .

Fig. 3.
Fig. 3.

Band gap diagrams for the woodpile PCs composed of air rods piled up in a Si substrate. (a) the variation of the complete PBGs with w. (b) the variation of the complete PBGs with w2 . (c) the variation of the complete PBGs with w1 .

Fig. 4.
Fig. 4.

Band gap diagram as a function of the rod height for the woodpile fct PC composed of Si rods piled up in an air background.

Fig. 5.
Fig. 5.

Band gap diagram as a function of the rod height for the woodpile fct PC composed of air rods piled up in a Si substrate.

Fig. 6.
Fig. 6.

Band gap diagrams as a function of the refractive index difference (nrod -nair ) for the woodpile PCs composed of dielectric rods stacked up in an air background. (a) fct symmetry, w=27.8 μm and h=30.5 μm. (b) a novel woodpile lattice, w1 =27.8 μm, w2 =32.6 μm and h=30.5 μm. (c) a novel woodpile lattice, w1 =25 μm, w2 =27.8 μm and h=30.5 μm.

Fig. 7.
Fig. 7.

Band gap diagrams as a function of the refractive index of the background material (nbackground ) for the woodpile PCs composed of air rods stacked up in a dielectric substrate. (a) fct symmetry, w=73.3 μm and h=38.1 μm. (b) a novel woodpile lattice, w1 =73.3 μm, w2 =69 μm and h=38.1 μm. (c) a novel woodpile lattice, w1 =75.5 μm, w2 =73 μm and h=38.1 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

l x = 6 × period x + w 1
l y = 7 × period z + w 2

Metrics