Abstract

We report using a Raman fiber laser (RFL) based on a multimode graded-index fiber as a novel method for beam combination of two continuous wave pump beams. Due to stimulated Raman scattering, the RFL generates a Stokes beam which can be up to 300% brighter than the pump beams. Up to 5.8 W of Stokes power is generated with an optical conversion efficiency of 56%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron 11, 567 - 577 (2005).
    [CrossRef]
  2. T. H. Russell, W. B. Roh, and J. R. Marciante, "Incoherent beam combining using stimulated Brillouin scattering in multimode fibers," Opt. Express 8, 246-254 (2001).
    [CrossRef] [PubMed]
  3. B. G. Grime, W. B. Roh, and T. G. Alley, "Phasing of a two-channel continuous-wave master oscillator-power amplifier by use of a fiber phase-conjugate mirror," Opt. Lett. 30, 2415-2417 (2005).
    [CrossRef] [PubMed]
  4. M. H. Smith, D. W. Trainor, and C. Duzy, "Shallow angle beam combining using a broad-band XeF laser," IEEE J. Quantum Electron 26, 942 - 949 (1990).
    [CrossRef]
  5. C. A. Codemard, P. Dupriez, Y. Jeong, J. K. Sahu, M. Ibsen, and J. Nilsson, "High-power continuous-wave cladding-pumped Raman fiber laser," Opt. Lett. 31, 2290-2292 (2006).
    [CrossRef] [PubMed]
  6. B. M. Flusche, T. G. Alley, T. H. Russell, and W. B. Roh, "Multi-port beam combination and cleanup in large multimode fiber using stimulated Raman scattering," Opt. Express 14, 11748-11755 (2006).
    [CrossRef] [PubMed]
  7. L. Lombard, A. Brignon, J. P. Huignard, E. Lallier and P. Georges, "Beam cleanup in a self-aligned gradient-index Brillouin cavity for high-power multimode fiber amplifiers," Opt. Lett. 31, 158-160 (2006).
    [CrossRef] [PubMed]
  8. K. S. Chaing, "Stimulated Raman scattering in a multimode optical fiber: evolution of modes in Stokes waves," Opt. Lett. 17, 352 - 354 (1992).
    [CrossRef]
  9. T. H. Russell, S. M. Willis, M. B. Crookston and W. B. Roh, "Stimulated Raman scattering in multimode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 303 - 316 (2002).
    [CrossRef]
  10. S. H. Baek and W. B. Roh, "Single-mode Raman fiber laser based on a mulitmode fiber," Opt. Lett. 29, 153 - 155 (2004).
    [CrossRef] [PubMed]
  11. W. Yumming, D. Jingcao, Z. Mingde, and S. Xiaohan, "Theoretical and experimental study on multimode optical fiber grating," Opt. Commun. 250, 54 - 62 (2005).
    [CrossRef]

2006 (3)

2005 (3)

T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron 11, 567 - 577 (2005).
[CrossRef]

W. Yumming, D. Jingcao, Z. Mingde, and S. Xiaohan, "Theoretical and experimental study on multimode optical fiber grating," Opt. Commun. 250, 54 - 62 (2005).
[CrossRef]

B. G. Grime, W. B. Roh, and T. G. Alley, "Phasing of a two-channel continuous-wave master oscillator-power amplifier by use of a fiber phase-conjugate mirror," Opt. Lett. 30, 2415-2417 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

T. H. Russell, S. M. Willis, M. B. Crookston and W. B. Roh, "Stimulated Raman scattering in multimode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 303 - 316 (2002).
[CrossRef]

2001 (1)

1992 (1)

1990 (1)

M. H. Smith, D. W. Trainor, and C. Duzy, "Shallow angle beam combining using a broad-band XeF laser," IEEE J. Quantum Electron 26, 942 - 949 (1990).
[CrossRef]

Alley, T. G.

Baek, S. H.

Brignon, A.

Chaing, K. S.

Codemard, C. A.

Crookston, M. B.

T. H. Russell, S. M. Willis, M. B. Crookston and W. B. Roh, "Stimulated Raman scattering in multimode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 303 - 316 (2002).
[CrossRef]

Dupriez, P.

Duzy, C.

M. H. Smith, D. W. Trainor, and C. Duzy, "Shallow angle beam combining using a broad-band XeF laser," IEEE J. Quantum Electron 26, 942 - 949 (1990).
[CrossRef]

Fan, T. Y.

T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron 11, 567 - 577 (2005).
[CrossRef]

Flusche, B. M.

Georges, P.

Grime, B. G.

Huignard, J. P.

Ibsen, M.

Jeong, Y.

Jingcao, D.

W. Yumming, D. Jingcao, Z. Mingde, and S. Xiaohan, "Theoretical and experimental study on multimode optical fiber grating," Opt. Commun. 250, 54 - 62 (2005).
[CrossRef]

Lallier, E.

Lombard, L.

Marciante, J. R.

Mingde, Z.

W. Yumming, D. Jingcao, Z. Mingde, and S. Xiaohan, "Theoretical and experimental study on multimode optical fiber grating," Opt. Commun. 250, 54 - 62 (2005).
[CrossRef]

Nilsson, J.

Roh, W. B.

Russell, T. H.

Sahu, J. K.

Smith, M. H.

M. H. Smith, D. W. Trainor, and C. Duzy, "Shallow angle beam combining using a broad-band XeF laser," IEEE J. Quantum Electron 26, 942 - 949 (1990).
[CrossRef]

Trainor, D. W.

M. H. Smith, D. W. Trainor, and C. Duzy, "Shallow angle beam combining using a broad-band XeF laser," IEEE J. Quantum Electron 26, 942 - 949 (1990).
[CrossRef]

Willis, S. M.

T. H. Russell, S. M. Willis, M. B. Crookston and W. B. Roh, "Stimulated Raman scattering in multimode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 303 - 316 (2002).
[CrossRef]

Xiaohan, S.

W. Yumming, D. Jingcao, Z. Mingde, and S. Xiaohan, "Theoretical and experimental study on multimode optical fiber grating," Opt. Commun. 250, 54 - 62 (2005).
[CrossRef]

Yumming, W.

W. Yumming, D. Jingcao, Z. Mingde, and S. Xiaohan, "Theoretical and experimental study on multimode optical fiber grating," Opt. Commun. 250, 54 - 62 (2005).
[CrossRef]

IEEE J. Quantum Electron (1)

M. H. Smith, D. W. Trainor, and C. Duzy, "Shallow angle beam combining using a broad-band XeF laser," IEEE J. Quantum Electron 26, 942 - 949 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron (1)

T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron 11, 567 - 577 (2005).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

T. H. Russell, S. M. Willis, M. B. Crookston and W. B. Roh, "Stimulated Raman scattering in multimode fibers and its application to beam cleanup and combining," J. Nonlinear Opt. Phys. Mater. 11, 303 - 316 (2002).
[CrossRef]

Opt. Commun. (1)

W. Yumming, D. Jingcao, Z. Mingde, and S. Xiaohan, "Theoretical and experimental study on multimode optical fiber grating," Opt. Commun. 250, 54 - 62 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of experimental setup.

Fig. 2.
Fig. 2.

Normalized reflectivity spectrum of the FBG on the front end of the RFL.

Fig. 3.
Fig. 3.

Stokes power as a function of coupled pump power for the RFL beam combiner with an FBG which is 90% reflective at the Stokes wavelength and a configuration with no FBG (i.e. uses the 4% Fresnel reflection as the output coupler).

Fig. 4.
Fig. 4.

Beam quality of the output of a 2500 m long RFL with various output coupler FBGs for two different Stokes output powers. Each configuration is identified by the reflectivity of the output coupler FBG as given by the manufacturer. The label “4%” indicates that no FBG is used—instead the output coupler is the Fresnel reflection of the flat cleaved face of the fiber.

Fig. 5.
Fig. 5.

Spectrum produced by the 4% output coupler at 2 W of power (a) and by the 90% output coupler at 2 W of Stokes power (b).

Fig. 6.
Fig. 6.

Spectrum produced by the 90% reflectivity FBG output coupler; (a) shows the spectrum at 2 W of power, (b) shows the multiple peaks characteristic of high power operation at 5.8 W of Stokes power. Note that multiple peaks correspond to resonant modes resulting from the multimode properties of the FBG.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B = P ( M 2 ) 2 λ ,

Metrics