Abstract

All-optical 40 Gbit/s format conversion from nonreturn-to-zero (NRZ) to return-to-zero (RZ) is proposed and simulated for the first time, using the cascaded sum- and difference-frequency generation (SFG+DFG) in a periodically poled lithium niobate (PPLN) waveguide incorporated in a Sagnac interferometer structure. Simultaneous single-to-triple channel NRZ-to-RZ format conversion is achieved. Both optical spectra and eye diagrams exhibit impressive conversion performance. The duty cycle, pulse width ratio, Q-factor and extinction ratio (ER) of the converted RZ are analyzed. It is found that flexible NRZ-to-RZ format conversion can be implemented with great tunability, i.e. both input NRZ signal wavelength and converted RZ wavelength can be tuned in a wide wavelength range (>60 nm).

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror

Jian Wang, Junqiang Sun, and Qizhen Sun
Opt. Lett. 32(11) 1477-1479 (2007)

Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking

Jian Wang, Junqiang Sun, Qizhen Sun, Dalin Wang, Minjuan Zhou, Xinliang Zhang, Dexiu Huang, and M. M. Fejer
Opt. Lett. 32(16) 2462-2464 (2007)

Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles

Yu Yu, Xinliang Zhang, J. B. Rosas-Fernández, Dexiu Huang, R. V. Penty, and I. H. White
Opt. Express 16(20) 16166-16171 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, “Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
    [Crossref]
  2. J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
    [Crossref]
  3. J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13,7405–7414 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405
    [Crossref] [PubMed]
  4. J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, “Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,” Opt. Commun. 269,179–187 (2007).
    [Crossref]
  5. S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41,1007–1012 (2005).
    [Crossref]
  6. G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B 17,1420–1437 (2000).
    [Crossref]
  7. G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13,341–343 (2001).
    [Crossref]
  8. J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31,1711–1713 (2006).
    [Crossref] [PubMed]
  9. S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30,984–985 (1994).
    [Crossref]
  10. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photonics Technol. Lett. 15,308–310 (2003).
    [Crossref]
  11. M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28,875–882 (1992).
    [Crossref]

2007 (1)

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, “Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,” Opt. Commun. 269,179–187 (2007).
[Crossref]

2006 (2)

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[Crossref]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31,1711–1713 (2006).
[Crossref] [PubMed]

2005 (2)

2003 (2)

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, “Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[Crossref]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photonics Technol. Lett. 15,308–310 (2003).
[Crossref]

2001 (1)

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13,341–343 (2001).
[Crossref]

2000 (1)

1994 (1)

S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30,984–985 (1994).
[Crossref]

1992 (1)

M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28,875–882 (1992).
[Crossref]

Arbore, M. A.

Baby, V.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photonics Technol. Lett. 15,308–310 (2003).
[Crossref]

Bigo, S.

S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30,984–985 (1994).
[Crossref]

Brun, E.

S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30,984–985 (1994).
[Crossref]

Desurvire, E.

S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30,984–985 (1994).
[Crossref]

Fejer, M. M.

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[Crossref]

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, “Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[Crossref]

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13,341–343 (2001).
[Crossref]

G. Imeshev, M. A. Arbore, S. Kasriel, and M. M. Fejer, “Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion,” J. Opt. Soc. Am. B 17,1420–1437 (2000).
[Crossref]

Gauchard, S.

S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30,984–985 (1994).
[Crossref]

Glesk, I.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photonics Technol. Lett. 15,308–310 (2003).
[Crossref]

Gu, W.

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41,1007–1012 (2005).
[Crossref]

Huang, D.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, “Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,” Opt. Commun. 269,179–187 (2007).
[Crossref]

Imeshev, G.

Jinno, M.

M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28,875–882 (1992).
[Crossref]

Kanter, G. S.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13,341–343 (2001).
[Crossref]

Kasriel, S.

Kumar, P.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13,341–343 (2001).
[Crossref]

Kurz, J. R.

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[Crossref]

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, “Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[Crossref]

Liu, W.

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, “Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[Crossref]

Luo, C.

Matsumoto, T.

M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28,875–882 (1992).
[Crossref]

Parameswaran, K. R.

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13,341–343 (2001).
[Crossref]

Prucnal, P. R.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photonics Technol. Lett. 15,308–310 (2003).
[Crossref]

Sun, J.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, “Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,” Opt. Commun. 269,179–187 (2007).
[Crossref]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[Crossref]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31,1711–1713 (2006).
[Crossref] [PubMed]

J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13,7405–7414 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405
[Crossref] [PubMed]

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, “Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[Crossref]

Sun, Q.

Tian, J.

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, “Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[Crossref]

Wang, B. C.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photonics Technol. Lett. 15,308–310 (2003).
[Crossref]

Wang, J.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, “Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,” Opt. Commun. 269,179–187 (2007).
[Crossref]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[Crossref]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31,1711–1713 (2006).
[Crossref] [PubMed]

J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13,7405–7414 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7405
[Crossref] [PubMed]

Xu, L.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photonics Technol. Lett. 15,308–310 (2003).
[Crossref]

Yu, S.

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41,1007–1012 (2005).
[Crossref]

Yuan, X.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, “Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,” Opt. Commun. 269,179–187 (2007).
[Crossref]

Zhang, X.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, “Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,” Opt. Commun. 269,179–187 (2007).
[Crossref]

Electron. Lett. (1)

S. Bigo, E. Desurvire, S. Gauchard, and E. Brun, “Bit-rate enhancement through optical NRZ-to-RZ conversion and passive time-division multiplexing for soliton transmission systems,” Electron. Lett. 30,984–985 (1994).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41,1007–1012 (2005).
[Crossref]

M. Jinno and T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28,875–882 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (4)

J. Sun, W. Liu, J. Tian, J. R. Kurz, and M. M. Fejer, “Multichannel wavelength conversion exploiting cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 15,1743–1745 (2003).
[Crossref]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18,2093–2095 (2006).
[Crossref]

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, “All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter,” IEEE Photonics Technol. Lett. 15,308–310 (2003).
[Crossref]

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, “Wavelength-selective pulsed all-optical switching based on cascaded second-order nonlinearity in a periodically poled lithium-niobate waveguide,” IEEE Photonics Technol. Lett. 13,341–343 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, “Experimental observation of tunable wavelength downand up-conversions of ultra-short pulses in a periodically poled LiNbO3 waveguide,” Opt. Commun. 269,179–187 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic illustration for PPLN-based all-optical NRZ-to-RZ format conversion. TF: tunable filter.

Fig. 2.
Fig. 2.

Temporal waveforms of different optical waves: (a) input NRZ signal, (b) input pulsed pump, (c) input continuous-wave control, (d) clockwise output signal from PPLN, (e) clockwise output control from PPLN, (f) output RZ idler at port ②, (g) output RZ signal at port ②, (h) output RZ control at port ②.

Fig. 3.
Fig. 3.

Simulated optical spectra of different optical waves: (a) input NRZ signal, (b) input pulsed pump, (c) input continuous-wave control, (d) clockwise output signal from PPLN, (e) clockwise output control from PPLN, (f) output RZ idler at port ②, (g) output RZ signal at port ②, (h) output RZ control at port ②, (i) referenced 27-1, 40 Gbit/s PRBS RZ data signal of hyperbolic-secant type with a pulse width of 5 ps.

Fig. 4.
Fig. 4.

Simulated eye diagrams of different optical waves: (a) input NRZ signal, (b) input pulsed pump, (c) output RZ idler at port ②, (d) output RZ signal at port ②, (e) output RZ control at port ②, (f) referenced 27-1, 40 Gbit/s PRBS RZ data signal of hyperbolic-secant type with a pulse width of 5 ps.

Fig. 5.
Fig. 5.

Dependence of (a) duty cycle, pulse width ratio and (b) Q-factor, extinction ratio on the pump pulse width for the converted RZ idler, signal and control.

Fig. 6.
Fig. 6.

Dependence of conversion efficiency on (a) control wavelength, idler wavelength and (b) signal wavelength, pump wavelength for the converted RZ idler, signal and control.

Metrics