Abstract

We theoretically predict and experimentally observe the two-dimensional (2-D) bright solitons in a nonconventionally biased strontium barium niobate (SBN) crystal. A theory describing light propagating in an SBN crystal with a bias field along an arbitrary direction is formulated. Then the existence of 2-D bright solitons in such a crystal is numerically verified. By employing digital holography, the index changes induced by Gaussian beams in an SBN crystal under different biasing conditions are visualized. Finally, skewed elliptical solitons are experimentally demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Coupled photorefractive spatial-soliton pairs

Zhigang Chen, Mordechai Segev, Tamer H. Coskun, Demetrios N. Christodoulides, and Yuri S. Kivshar
J. Opt. Soc. Am. B 14(11) 3066-3077 (1997)

Steady-state vortex-screening solitons formed in biased photorefractive media

Zhigang Chen, Ming-feng Shih, Mordechai Segev, Daniel W. Wilson, Richard E. Muller, and Paul D. Maker
Opt. Lett. 22(23) 1751-1753 (1997)

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett 68,923 (1992).
    [Crossref] [PubMed]
  2. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,𡀝 Science 286,1518 (1999).
    [Crossref] [PubMed]
  3. M. Shih, P. Leach, M. Segev, M. H. Garett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett 21,324 (1996).
    [Crossref] [PubMed]
  4. Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett 21,629 (1996).
    [Crossref] [PubMed]
  5. W. Królikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett 22,369 (1997).
    [Crossref] [PubMed]
  6. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422,147 (2003).
    [Crossref] [PubMed]
  7. J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Yu. S. Kivshar, “Vector solitons in (2+1) dimensions,” Opt. Lett 25,643 (2000).
    [Crossref]
  8. Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett 78,2948 (1997).
    [Crossref]
  9. C. Crognale and L. Rosa, “Vector analysis of the space-charge field in nonconventionally biased photorefractive crystals,” J. Lightwave Technol 23,2175 (2005).
    [Crossref]
  10. A. Yariv and P. Yeh, Optical waves in crystals (Wiley, New York1984), Chap. 7.
  11. P. Zhang, Y. Ma, J. Zhao, D. X. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt 45,2273 (2006).
    [Crossref] [PubMed]
  12. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51,1520 (1995).
    [Crossref] [PubMed]
  13. A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, “Solitary attractors and low-order filamentation in anisotropic self-focusing media,” Phys. Rev. A 57,522 (1998).
    [Crossref]
  14. V. I. Petviashvili, “Equation of an extraordinary soliton,” Sov. J. PlasmaPhys 2,257 (1976).
  15. J. Zhao, P. Zhang, J. Zhou, D. X. Yang, D. S. Yang, and E. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett 20,1748 (2003).
    [Crossref]
  16. E. D. Eugenieva, D. N. Christodoulides, and M. Segev, “Elliptic incoherent solitons in saturable nonlinear media,” Opt. Lett 25,972 (2000).
    [Crossref]
  17. O. Katz, T. Carmon, T. Schwartz, M. Segev, and D. N. Christodoulides, “Observation of elliptic incoherent spatial solitons,” Opt. Lett 29,1248 (2004).
    [Crossref] [PubMed]

2006 (1)

P. Zhang, Y. Ma, J. Zhao, D. X. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt 45,2273 (2006).
[Crossref] [PubMed]

2005 (1)

C. Crognale and L. Rosa, “Vector analysis of the space-charge field in nonconventionally biased photorefractive crystals,” J. Lightwave Technol 23,2175 (2005).
[Crossref]

2004 (1)

O. Katz, T. Carmon, T. Schwartz, M. Segev, and D. N. Christodoulides, “Observation of elliptic incoherent spatial solitons,” Opt. Lett 29,1248 (2004).
[Crossref] [PubMed]

2003 (2)

J. Zhao, P. Zhang, J. Zhou, D. X. Yang, D. S. Yang, and E. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett 20,1748 (2003).
[Crossref]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422,147 (2003).
[Crossref] [PubMed]

2000 (2)

J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Yu. S. Kivshar, “Vector solitons in (2+1) dimensions,” Opt. Lett 25,643 (2000).
[Crossref]

E. D. Eugenieva, D. N. Christodoulides, and M. Segev, “Elliptic incoherent solitons in saturable nonlinear media,” Opt. Lett 25,972 (2000).
[Crossref]

1999 (1)

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,𡀝 Science 286,1518 (1999).
[Crossref] [PubMed]

1998 (1)

A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, “Solitary attractors and low-order filamentation in anisotropic self-focusing media,” Phys. Rev. A 57,522 (1998).
[Crossref]

1997 (2)

W. Królikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett 22,369 (1997).
[Crossref] [PubMed]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett 78,2948 (1997).
[Crossref]

1996 (2)

M. Shih, P. Leach, M. Segev, M. H. Garett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett 21,324 (1996).
[Crossref] [PubMed]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett 21,629 (1996).
[Crossref] [PubMed]

1995 (1)

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51,1520 (1995).
[Crossref] [PubMed]

1992 (1)

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett 68,923 (1992).
[Crossref] [PubMed]

1976 (1)

V. I. Petviashvili, “Equation of an extraordinary soliton,” Sov. J. PlasmaPhys 2,257 (1976).

Anderson, D.

J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Yu. S. Kivshar, “Vector solitons in (2+1) dimensions,” Opt. Lett 25,643 (2000).
[Crossref]

Anderson, D. Z.

A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, “Solitary attractors and low-order filamentation in anisotropic self-focusing media,” Phys. Rev. A 57,522 (1998).
[Crossref]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51,1520 (1995).
[Crossref] [PubMed]

Carlsson, A. H.

J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Yu. S. Kivshar, “Vector solitons in (2+1) dimensions,” Opt. Lett 25,643 (2000).
[Crossref]

Carmon, T.

O. Katz, T. Carmon, T. Schwartz, M. Segev, and D. N. Christodoulides, “Observation of elliptic incoherent spatial solitons,” Opt. Lett 29,1248 (2004).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett 78,2948 (1997).
[Crossref]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett 21,629 (1996).
[Crossref] [PubMed]

Christodoulides, D. N.

O. Katz, T. Carmon, T. Schwartz, M. Segev, and D. N. Christodoulides, “Observation of elliptic incoherent spatial solitons,” Opt. Lett 29,1248 (2004).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422,147 (2003).
[Crossref] [PubMed]

E. D. Eugenieva, D. N. Christodoulides, and M. Segev, “Elliptic incoherent solitons in saturable nonlinear media,” Opt. Lett 25,972 (2000).
[Crossref]

Crognale, C.

C. Crognale and L. Rosa, “Vector analysis of the space-charge field in nonconventionally biased photorefractive crystals,” J. Lightwave Technol 23,2175 (2005).
[Crossref]

Crosignani, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett 68,923 (1992).
[Crossref] [PubMed]

Efremidis, N. K.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422,147 (2003).
[Crossref] [PubMed]

Eugenieva, E. D.

E. D. Eugenieva, D. N. Christodoulides, and M. Segev, “Elliptic incoherent solitons in saturable nonlinear media,” Opt. Lett 25,972 (2000).
[Crossref]

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett 68,923 (1992).
[Crossref] [PubMed]

Fleischer, J. W.

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422,147 (2003).
[Crossref] [PubMed]

Garett, M. H.

M. Shih, P. Leach, M. Segev, M. H. Garett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett 21,324 (1996).
[Crossref] [PubMed]

Garrett, M. H.

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett 21,629 (1996).
[Crossref] [PubMed]

Holmstrom, S. A.

W. Królikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett 22,369 (1997).
[Crossref] [PubMed]

Katz, O.

O. Katz, T. Carmon, T. Schwartz, M. Segev, and D. N. Christodoulides, “Observation of elliptic incoherent spatial solitons,” Opt. Lett 29,1248 (2004).
[Crossref] [PubMed]

Kivshar, Yu. S.

J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Yu. S. Kivshar, “Vector solitons in (2+1) dimensions,” Opt. Lett 25,643 (2000).
[Crossref]

Królikowski, W.

W. Królikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett 22,369 (1997).
[Crossref] [PubMed]

Leach, P.

M. Shih, P. Leach, M. Segev, M. H. Garett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett 21,324 (1996).
[Crossref] [PubMed]

Li, E.

J. Zhao, P. Zhang, J. Zhou, D. X. Yang, D. S. Yang, and E. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett 20,1748 (2003).
[Crossref]

Lisak, M.

J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Yu. S. Kivshar, “Vector solitons in (2+1) dimensions,” Opt. Lett 25,643 (2000).
[Crossref]

Ma, Y.

P. Zhang, Y. Ma, J. Zhao, D. X. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt 45,2273 (2006).
[Crossref] [PubMed]

Maker, P. D.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett 78,2948 (1997).
[Crossref]

Malmberg, J. N.

J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Yu. S. Kivshar, “Vector solitons in (2+1) dimensions,” Opt. Lett 25,643 (2000).
[Crossref]

Mamaev, A. V.

A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, “Solitary attractors and low-order filamentation in anisotropic self-focusing media,” Phys. Rev. A 57,522 (1998).
[Crossref]

Mitchell, M.

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett 21,629 (1996).
[Crossref] [PubMed]

Muller, R. E.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett 78,2948 (1997).
[Crossref]

Ostrovskaya, E. A.

J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Yu. S. Kivshar, “Vector solitons in (2+1) dimensions,” Opt. Lett 25,643 (2000).
[Crossref]

Petviashvili, V. I.

V. I. Petviashvili, “Equation of an extraordinary soliton,” Sov. J. PlasmaPhys 2,257 (1976).

Rosa, L.

C. Crognale and L. Rosa, “Vector analysis of the space-charge field in nonconventionally biased photorefractive crystals,” J. Lightwave Technol 23,2175 (2005).
[Crossref]

Saffman, M.

A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, “Solitary attractors and low-order filamentation in anisotropic self-focusing media,” Phys. Rev. A 57,522 (1998).
[Crossref]

Salamo, G.

M. Shih, P. Leach, M. Segev, M. H. Garett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett 21,324 (1996).
[Crossref] [PubMed]

Schwartz, T.

O. Katz, T. Carmon, T. Schwartz, M. Segev, and D. N. Christodoulides, “Observation of elliptic incoherent spatial solitons,” Opt. Lett 29,1248 (2004).
[Crossref] [PubMed]

Segev, M.

O. Katz, T. Carmon, T. Schwartz, M. Segev, and D. N. Christodoulides, “Observation of elliptic incoherent spatial solitons,” Opt. Lett 29,1248 (2004).
[Crossref] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422,147 (2003).
[Crossref] [PubMed]

E. D. Eugenieva, D. N. Christodoulides, and M. Segev, “Elliptic incoherent solitons in saturable nonlinear media,” Opt. Lett 25,972 (2000).
[Crossref]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,𡀝 Science 286,1518 (1999).
[Crossref] [PubMed]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett 78,2948 (1997).
[Crossref]

M. Shih, P. Leach, M. Segev, M. H. Garett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett 21,324 (1996).
[Crossref] [PubMed]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett 21,629 (1996).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett 68,923 (1992).
[Crossref] [PubMed]

Shih, M.

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett 21,629 (1996).
[Crossref] [PubMed]

M. Shih, P. Leach, M. Segev, M. H. Garett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett 21,324 (1996).
[Crossref] [PubMed]

Stegeman, G. I.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,𡀝 Science 286,1518 (1999).
[Crossref] [PubMed]

Valley, G. C.

M. Shih, P. Leach, M. Segev, M. H. Garett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett 21,324 (1996).
[Crossref] [PubMed]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett 21,629 (1996).
[Crossref] [PubMed]

Wilson, D. W.

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett 78,2948 (1997).
[Crossref]

Xu, H.

P. Zhang, Y. Ma, J. Zhao, D. X. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt 45,2273 (2006).
[Crossref] [PubMed]

Yang, D. S.

J. Zhao, P. Zhang, J. Zhou, D. X. Yang, D. S. Yang, and E. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett 20,1748 (2003).
[Crossref]

Yang, D. X.

P. Zhang, Y. Ma, J. Zhao, D. X. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt 45,2273 (2006).
[Crossref] [PubMed]

J. Zhao, P. Zhang, J. Zhou, D. X. Yang, D. S. Yang, and E. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett 20,1748 (2003).
[Crossref]

Yariv, A.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett 68,923 (1992).
[Crossref] [PubMed]

A. Yariv and P. Yeh, Optical waves in crystals (Wiley, New York1984), Chap. 7.

Yeh, P.

A. Yariv and P. Yeh, Optical waves in crystals (Wiley, New York1984), Chap. 7.

Zhang, P.

P. Zhang, Y. Ma, J. Zhao, D. X. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt 45,2273 (2006).
[Crossref] [PubMed]

J. Zhao, P. Zhang, J. Zhou, D. X. Yang, D. S. Yang, and E. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett 20,1748 (2003).
[Crossref]

Zhao, J.

P. Zhang, Y. Ma, J. Zhao, D. X. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt 45,2273 (2006).
[Crossref] [PubMed]

J. Zhao, P. Zhang, J. Zhou, D. X. Yang, D. S. Yang, and E. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett 20,1748 (2003).
[Crossref]

Zhou, J.

J. Zhao, P. Zhang, J. Zhou, D. X. Yang, D. S. Yang, and E. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett 20,1748 (2003).
[Crossref]

Zozulya, A. A.

A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, “Solitary attractors and low-order filamentation in anisotropic self-focusing media,” Phys. Rev. A 57,522 (1998).
[Crossref]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51,1520 (1995).
[Crossref] [PubMed]

Appl. Opt (1)

P. Zhang, Y. Ma, J. Zhao, D. X. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt 45,2273 (2006).
[Crossref] [PubMed]

Chin. Phys. Lett (1)

J. Zhao, P. Zhang, J. Zhou, D. X. Yang, D. S. Yang, and E. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett 20,1748 (2003).
[Crossref]

J. Lightwave Technol (1)

C. Crognale and L. Rosa, “Vector analysis of the space-charge field in nonconventionally biased photorefractive crystals,” J. Lightwave Technol 23,2175 (2005).
[Crossref]

Nature (1)

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422,147 (2003).
[Crossref] [PubMed]

Opt. Lett (6)

J. N. Malmberg, A. H. Carlsson, D. Anderson, M. Lisak, E. A. Ostrovskaya, and Yu. S. Kivshar, “Vector solitons in (2+1) dimensions,” Opt. Lett 25,643 (2000).
[Crossref]

M. Shih, P. Leach, M. Segev, M. H. Garett, G. Salamo, and G. C. Valley, “Two-dimensional steady-state photorefractive screening solitons,” Opt. Lett 21,324 (1996).
[Crossref] [PubMed]

Z. Chen, M. Mitchell, M. Shih, M. Segev, M. H. Garrett, and G. C. Valley, “Steady-state dark photorefractive screening solitons,” Opt. Lett 21,629 (1996).
[Crossref] [PubMed]

W. Królikowski and S. A. Holmstrom, “Fusion and birth of spatial solitons upon collision,” Opt. Lett 22,369 (1997).
[Crossref] [PubMed]

E. D. Eugenieva, D. N. Christodoulides, and M. Segev, “Elliptic incoherent solitons in saturable nonlinear media,” Opt. Lett 25,972 (2000).
[Crossref]

O. Katz, T. Carmon, T. Schwartz, M. Segev, and D. N. Christodoulides, “Observation of elliptic incoherent spatial solitons,” Opt. Lett 29,1248 (2004).
[Crossref] [PubMed]

Phys. Rev. A (2)

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51,1520 (1995).
[Crossref] [PubMed]

A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, “Solitary attractors and low-order filamentation in anisotropic self-focusing media,” Phys. Rev. A 57,522 (1998).
[Crossref]

Phys. Rev. Lett (2)

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett 68,923 (1992).
[Crossref] [PubMed]

Z. Chen, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Self-trapping of an optical vortex by use of the bulk photovoltaic effect,” Phys. Rev. Lett 78,2948 (1997).
[Crossref]

Science (1)

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,𡀝 Science 286,1518 (1999).
[Crossref] [PubMed]

Sov. J. PlasmaPhys (1)

V. I. Petviashvili, “Equation of an extraordinary soliton,” Sov. J. PlasmaPhys 2,257 (1976).

Other (1)

A. Yariv and P. Yeh, Optical waves in crystals (Wiley, New York1984), Chap. 7.

Supplementary Material (1)

» Media 1: MPG (2282 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Geometry of light beam propagation in a nonconventionally biased SBN crystal.

Fig. 2.
Fig. 2.

Numerical simulations of the index changes and beam propagations in a nonconventionally biased SBN crystal. (a) Input beam; (b) Linearly diffracted beam; (c) Light-induced potential; (d)-(h) Index changes induced by the input beam shown in (a) (top), output beams after nonlinear propagations (middle), and the corresponding nonlinear index changes at z=15 (bottom) for the cases of α=0, π/4 , π/2, 3π/4, and π, respectively.

Fig. 3
Fig. 3

Simulation results for 2-D bright elliptical solitons in nonconventionally biased SBN crystal. (a)-(c) Solitons with different propagation constantβ; (d) Index changes induced by the solitons shown in (b); From the first to the third row, they are the results for α=0, π/4 and π/2, respectively. (e) Soliton maximum intensity I max versus β; (f) FWHMs of the solitons and their ratio versus I max.

Fig. 4.
Fig. 4.

Simulations of the evolutions of a Gaussian beam in a nonconventionally biased SBN crystal. (a)-(e) Linear diffracted profiles with z=0, 150, 300, 450, 600, respectively; (f)-(j) Beam profiles after nonlinear propagated with z=50, 100, 300, 450, 600, respectively; (k)-(o) Nonlinear index changes corresponding to the beam profiles in (f)-(j); (p) FWHMs of the beams versus propagation lengths z.

Fig. 5.
Fig. 5.

Measured light-induced index changes in a nonconventionally biased SBN:Cr crystal. (a)–(d) 2-D maps of index changes for α=0, π, π/2 and -π/2, respectively; (e) 3-D display of (d).

Fig. 6.
Fig. 6.

Sketch of the experimental setup for observing bright solitons in nonconventionally biased SBN crystal.

Fig. 7.
Fig. 7.

Experimental results for observing soliton formations in a nonconventionally biased SBN:Cr crystal. (a) Profile of input Gaussian beam; (b)-(d) Beam profiles observed on the rear face of the crystal for a linearly diffracted beam, and the solitons formed with α=π/2 and -π/2, respectively; (e)-(h) Output beam profiles as the bias field is increased gradually; (i)-(l) Output beam profiles as the background beam illumination is increased gradually.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( z i 2 2 ) B ( r ) = i ( φ x sin α + φ y cos α ) B ( r )
2 φ + φ ln ( 1 + B ( r ) 2 ) = y ln ( 1 + B ( r ) 2 )
( β 1 2 2 ) b x y = ( φ x sin α + φ y cos α ) b x y
2 φ + φ ln ( 1 + b x y 2 ) = y ln ( 1 + b x y 2 )

Metrics