Abstract

We propose an original optical architecture for the construction of an Integrated Dumper – Regenerative Amplifier, by combining pulse generation and pulse slicing together with downstream regenerative amplification within a common amplifying unit and resonator. This design provides relatively short pulses at high energy, using a fairly simple and robust two-path resonator. The demonstration is performed with the help of a diode-pumped Yb3+: YAG slab operated at room temperature at 1Hz PRF, in the energy range of 5 to 50mJ per pulse with 500ps to 5ns FWHM.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jolly, J.F. Gleyze, D. Penninckx, N. Beck, L. Videau and H. Coic, « Fiber Lasers integration for LMJ,» Elsevier, Académie des Sciences -CR de Physique 7, 198-212 (2006)
    [CrossRef]
  2. S. Biswal, J. Nees, A. Nishimura, H. Takuma and G. Mourou, "Ytterbium-Doped Glass Regenerative Chirped-Pulse Amplifier," Opt. Commun. 160, 92-97 (1999)
    [CrossRef]
  3. M. Saeed, D. Kim and L.F. DiMauro, "Optimization and characterization of a high repetition rate, high intensity Nd: YLF regenerative amplifier," Appl. Opt. 29, 1752-1757 (1990)
    [CrossRef] [PubMed]
  4. LLE Review, "Highly stable, Diode-Pumped, Cavity-Dumped Nd:YLF Regenerative Amplifier for the OMEGA Laser Fusion Facility," LLE - Q. Report 91, 103-107 (2002)
  5. A. Jolly and Ph. Estraillier, "Generation of arbitrary waveforms with electro-optic pulse-shapers for high energy - multimode lasers," J. Opt. Laser Technol. 36, 75-80 (2004)
    [CrossRef]
  6. A. Jolly and E. Artigaut, "Theoretical design for the optimisation of a material’s geometry in diode-pumped high-energy Yb3+:YAG lasers and experimental validation at 0.5-1J," J. Appl. Opt. 43, 6016-6022 (2004)
    [CrossRef]
  7. J. Luce, in CEA patent CESTA ZD132, n°2772149 (1997).

2006 (1)

A. Jolly, J.F. Gleyze, D. Penninckx, N. Beck, L. Videau and H. Coic, « Fiber Lasers integration for LMJ,» Elsevier, Académie des Sciences -CR de Physique 7, 198-212 (2006)
[CrossRef]

2004 (2)

A. Jolly and Ph. Estraillier, "Generation of arbitrary waveforms with electro-optic pulse-shapers for high energy - multimode lasers," J. Opt. Laser Technol. 36, 75-80 (2004)
[CrossRef]

A. Jolly and E. Artigaut, "Theoretical design for the optimisation of a material’s geometry in diode-pumped high-energy Yb3+:YAG lasers and experimental validation at 0.5-1J," J. Appl. Opt. 43, 6016-6022 (2004)
[CrossRef]

1999 (1)

S. Biswal, J. Nees, A. Nishimura, H. Takuma and G. Mourou, "Ytterbium-Doped Glass Regenerative Chirped-Pulse Amplifier," Opt. Commun. 160, 92-97 (1999)
[CrossRef]

1990 (1)

Artigaut, E.

A. Jolly and E. Artigaut, "Theoretical design for the optimisation of a material’s geometry in diode-pumped high-energy Yb3+:YAG lasers and experimental validation at 0.5-1J," J. Appl. Opt. 43, 6016-6022 (2004)
[CrossRef]

Beck, N.

A. Jolly, J.F. Gleyze, D. Penninckx, N. Beck, L. Videau and H. Coic, « Fiber Lasers integration for LMJ,» Elsevier, Académie des Sciences -CR de Physique 7, 198-212 (2006)
[CrossRef]

Biswal, S.

S. Biswal, J. Nees, A. Nishimura, H. Takuma and G. Mourou, "Ytterbium-Doped Glass Regenerative Chirped-Pulse Amplifier," Opt. Commun. 160, 92-97 (1999)
[CrossRef]

Coic, H.

A. Jolly, J.F. Gleyze, D. Penninckx, N. Beck, L. Videau and H. Coic, « Fiber Lasers integration for LMJ,» Elsevier, Académie des Sciences -CR de Physique 7, 198-212 (2006)
[CrossRef]

DiMauro, L.F.

Estraillier, Ph.

A. Jolly and Ph. Estraillier, "Generation of arbitrary waveforms with electro-optic pulse-shapers for high energy - multimode lasers," J. Opt. Laser Technol. 36, 75-80 (2004)
[CrossRef]

Gleyze, J.F.

A. Jolly, J.F. Gleyze, D. Penninckx, N. Beck, L. Videau and H. Coic, « Fiber Lasers integration for LMJ,» Elsevier, Académie des Sciences -CR de Physique 7, 198-212 (2006)
[CrossRef]

Jolly, A.

A. Jolly, J.F. Gleyze, D. Penninckx, N. Beck, L. Videau and H. Coic, « Fiber Lasers integration for LMJ,» Elsevier, Académie des Sciences -CR de Physique 7, 198-212 (2006)
[CrossRef]

A. Jolly and Ph. Estraillier, "Generation of arbitrary waveforms with electro-optic pulse-shapers for high energy - multimode lasers," J. Opt. Laser Technol. 36, 75-80 (2004)
[CrossRef]

A. Jolly and E. Artigaut, "Theoretical design for the optimisation of a material’s geometry in diode-pumped high-energy Yb3+:YAG lasers and experimental validation at 0.5-1J," J. Appl. Opt. 43, 6016-6022 (2004)
[CrossRef]

Kim, D.

Mourou, G.

S. Biswal, J. Nees, A. Nishimura, H. Takuma and G. Mourou, "Ytterbium-Doped Glass Regenerative Chirped-Pulse Amplifier," Opt. Commun. 160, 92-97 (1999)
[CrossRef]

Nees, J.

S. Biswal, J. Nees, A. Nishimura, H. Takuma and G. Mourou, "Ytterbium-Doped Glass Regenerative Chirped-Pulse Amplifier," Opt. Commun. 160, 92-97 (1999)
[CrossRef]

Nishimura, A.

S. Biswal, J. Nees, A. Nishimura, H. Takuma and G. Mourou, "Ytterbium-Doped Glass Regenerative Chirped-Pulse Amplifier," Opt. Commun. 160, 92-97 (1999)
[CrossRef]

Penninckx, D.

A. Jolly, J.F. Gleyze, D. Penninckx, N. Beck, L. Videau and H. Coic, « Fiber Lasers integration for LMJ,» Elsevier, Académie des Sciences -CR de Physique 7, 198-212 (2006)
[CrossRef]

Saeed, M.

Takuma, H.

S. Biswal, J. Nees, A. Nishimura, H. Takuma and G. Mourou, "Ytterbium-Doped Glass Regenerative Chirped-Pulse Amplifier," Opt. Commun. 160, 92-97 (1999)
[CrossRef]

Videau, L.

A. Jolly, J.F. Gleyze, D. Penninckx, N. Beck, L. Videau and H. Coic, « Fiber Lasers integration for LMJ,» Elsevier, Académie des Sciences -CR de Physique 7, 198-212 (2006)
[CrossRef]

Appl. Opt. (1)

CR de Physique (1)

A. Jolly, J.F. Gleyze, D. Penninckx, N. Beck, L. Videau and H. Coic, « Fiber Lasers integration for LMJ,» Elsevier, Académie des Sciences -CR de Physique 7, 198-212 (2006)
[CrossRef]

J. Appl. Opt. (1)

A. Jolly and E. Artigaut, "Theoretical design for the optimisation of a material’s geometry in diode-pumped high-energy Yb3+:YAG lasers and experimental validation at 0.5-1J," J. Appl. Opt. 43, 6016-6022 (2004)
[CrossRef]

J. Opt. Laser Technol. (1)

A. Jolly and Ph. Estraillier, "Generation of arbitrary waveforms with electro-optic pulse-shapers for high energy - multimode lasers," J. Opt. Laser Technol. 36, 75-80 (2004)
[CrossRef]

Opt. Commun. (1)

S. Biswal, J. Nees, A. Nishimura, H. Takuma and G. Mourou, "Ytterbium-Doped Glass Regenerative Chirped-Pulse Amplifier," Opt. Commun. 160, 92-97 (1999)
[CrossRef]

Other (2)

LLE Review, "Highly stable, Diode-Pumped, Cavity-Dumped Nd:YLF Regenerative Amplifier for the OMEGA Laser Fusion Facility," LLE - Q. Report 91, 103-107 (2002)

J. Luce, in CEA patent CESTA ZD132, n°2772149 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The optical architecture of the IDRA: the main path consists of two Pockels Cells, PC 1 and PC 3, while the shaping path in the bottom is operated with the help of the third cell PC 2. Cavity Dumping and Regenerative Amplification need to be properly synchronized, which means that the minimum length of the shaping path is equal to that of the main path.

Fig. 2.
Fig. 2.

The operating chronograms to switch the IDRA, by using three electrodes – KD*P Pockels Cells in the main path: TRT is the round trip time in the upper main path and switching is operated at the quarter wave voltage, i.e. 4.5kV steps with 3ns transition times. N represents the number of round trips for Regenerative Amplification.

Fig. 3.
Fig. 3.

Build-up time in the Cavity Dumping mode of operation versus the pump current (top), the high – voltage electrical shaping waveform (bottom). The selected values of build-up times in the demonstration of the IDRA range from 100 to 200ns, depending on the actual pump power.

Fig. 4.
Fig. 4.

The leakage signal, through the flat Rmax mirror in the main path, to monitor the sequence of Regenerative Amplification (top) and the output pulse downstream P 2 (bottom). The pulse extraction can be operated just before or just after the gain saturation. The envelope of the successive pulses in the main path simply describes the shape of a standard Q-Switching process.

Metrics