Abstract

We report a 236 nm light source with 20 mW of average power based on critically phase-matched second-harmonic generation in a β-barium borate crystal at room temperature. The fundamental light source was a passively Q-switched 946 nm Nd:YAG laser tunable from 10 – 38 kHz and with a pulse length of 16 ns. In the generation of 473 nm light, periodically poled KTP and BiBO was compared in terms of conversion efficiency and stability.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Efficient high-power UV generation by use of a resonant ring driven by a cw mode-locked IR laser

S. C. Tidwell, G. Matone, G. Giordano, J. F. Seamans, and D. D. Lowenthal
Opt. Lett. 18(18) 1517-1519 (1993)

> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO

R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago
Opt. Mater. Express 2(7) 907-913 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Kojima, S. Konno, S. Fujikawa, K. Yasui, and K. Yoshizawa, “20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Lett. 25,58–60 (2000).
    [Crossref]
  2. J. Sakuma, K. Deki, A. Finch, Y. Ohsako, and T. Yokota, “All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals,” Appl. Opt. 39,5505–5511 (2000).
    [Crossref]
  3. J. Sakuma, Asakawa Y., and M. Obara, “Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal,” Appl. Opt. 39,5505–5511 (2000).
    [Crossref]
  4. J. Sakuma, Y. Asakawa, T. Imahoko, and M. Obara, “Generation of all-solid-state, high-power continuous wave 213-nm light based on sum-frequency mixing in CsLiB6O10,” Appl. Opt. 39,5505–5511 (2000).
    [Crossref]
  5. L. Chang, S. Wang, and A. Kung, “Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system,” Opt. Commun. 209,397–401 (2002).
    [Crossref]
  6. M. Oka, L. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-doubled Nd:YAG laser,” IEEE Quantum. Electron. 1,859–865 (1995).
    [Crossref]
  7. D. Gerstenberger, T. Trautmann, and M. Bowers, “Noncritically phase-matched second-harmonic generation in cesium lithium borate,” Opt. Lett. 28,1242–1244 (2003).
    [Crossref] [PubMed]
  8. J. Dong, “Numerical modeling of CW-pumped repetively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226,337–344 (2003).
    [Crossref]
  9. G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian Light Beams,” J. Appl. Phys. 39,3597–3639 (1968).
    [Crossref]
  10. V. Pasiskevicius, H. Karlsson, F. Laurell, R Butkus, V. Smilgevicius, and A. Piskarskas, “Highly efficient optical parametric oscillator in red spectral region with periodically poled KTP,” Opt. Lett. 26,710, (2001).
    [Crossref]
  11. S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96,2023–2028 (2004).
    [Crossref]
  12. J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Picosecond blue light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” Submitted to J. Appl. Phys.
  13. G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39,5058–5069 (2000).
    [Crossref]
  14. V. Pasiskevicius, S. Wang, J. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37,7116–7119 (1998).
    [Crossref]
  15. S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, “Optimizing non-resonant frequency conversion in periodically poled media,” Appl. Phys. B. 78,211–219 (2004).
    [Crossref]
  16. S. Wang, Fabrication and characterization of periodically-poled KTP and Rb-doped KTP for applications in the visible and UV (Doctoral Thesis in Physics, Stockholm, Sweden, 2005), http://www.laserphysics.kth.se.

2005 (1)

S. Wang, Fabrication and characterization of periodically-poled KTP and Rb-doped KTP for applications in the visible and UV (Doctoral Thesis in Physics, Stockholm, Sweden, 2005), http://www.laserphysics.kth.se.

2004 (2)

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96,2023–2028 (2004).
[Crossref]

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, “Optimizing non-resonant frequency conversion in periodically poled media,” Appl. Phys. B. 78,211–219 (2004).
[Crossref]

2003 (2)

D. Gerstenberger, T. Trautmann, and M. Bowers, “Noncritically phase-matched second-harmonic generation in cesium lithium borate,” Opt. Lett. 28,1242–1244 (2003).
[Crossref] [PubMed]

J. Dong, “Numerical modeling of CW-pumped repetively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226,337–344 (2003).
[Crossref]

2002 (1)

L. Chang, S. Wang, and A. Kung, “Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system,” Opt. Commun. 209,397–401 (2002).
[Crossref]

2001 (1)

2000 (5)

1998 (1)

1995 (1)

M. Oka, L. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-doubled Nd:YAG laser,” IEEE Quantum. Electron. 1,859–865 (1995).
[Crossref]

1968 (1)

G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian Light Beams,” J. Appl. Phys. 39,3597–3639 (1968).
[Crossref]

Asakawa, Y.

Bowers, M.

Boyd, G.

G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian Light Beams,” J. Appl. Phys. 39,3597–3639 (1968).
[Crossref]

Butkus, R

Chang, L.

L. Chang, S. Wang, and A. Kung, “Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system,” Opt. Commun. 209,397–401 (2002).
[Crossref]

Deki, K.

Dong, J.

J. Dong, “Numerical modeling of CW-pumped repetively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226,337–344 (2003).
[Crossref]

Eguchi, N.

M. Oka, L. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-doubled Nd:YAG laser,” IEEE Quantum. Electron. 1,859–865 (1995).
[Crossref]

Finch, A.

Freitag, I.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, “Optimizing non-resonant frequency conversion in periodically poled media,” Appl. Phys. B. 78,211–219 (2004).
[Crossref]

Fujikawa, S.

Gerstenberger, D.

Hansson, G.

Hirohashi, J.

J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Picosecond blue light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” Submitted to J. Appl. Phys.

Imahoko, T.

Karlsson, H.

Kleinman, D.

G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian Light Beams,” J. Appl. Phys. 39,3597–3639 (1968).
[Crossref]

Kojima, T.

Konno, S.

Kubota, S.

M. Oka, L. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-doubled Nd:YAG laser,” IEEE Quantum. Electron. 1,859–865 (1995).
[Crossref]

Kung, A.

L. Chang, S. Wang, and A. Kung, “Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system,” Opt. Commun. 209,397–401 (2002).
[Crossref]

Laurell, F.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96,2023–2028 (2004).
[Crossref]

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, “Optimizing non-resonant frequency conversion in periodically poled media,” Appl. Phys. B. 78,211–219 (2004).
[Crossref]

V. Pasiskevicius, H. Karlsson, F. Laurell, R Butkus, V. Smilgevicius, and A. Piskarskas, “Highly efficient optical parametric oscillator in red spectral region with periodically poled KTP,” Opt. Lett. 26,710, (2001).
[Crossref]

G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39,5058–5069 (2000).
[Crossref]

V. Pasiskevicius, S. Wang, J. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37,7116–7119 (1998).
[Crossref]

J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Picosecond blue light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” Submitted to J. Appl. Phys.

Liu, L.

M. Oka, L. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-doubled Nd:YAG laser,” IEEE Quantum. Electron. 1,859–865 (1995).
[Crossref]

Obara, M.

Ohsako, Y.

Oka, M.

M. Oka, L. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-doubled Nd:YAG laser,” IEEE Quantum. Electron. 1,859–865 (1995).
[Crossref]

Pasiskevicius, V.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96,2023–2028 (2004).
[Crossref]

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, “Optimizing non-resonant frequency conversion in periodically poled media,” Appl. Phys. B. 78,211–219 (2004).
[Crossref]

V. Pasiskevicius, H. Karlsson, F. Laurell, R Butkus, V. Smilgevicius, and A. Piskarskas, “Highly efficient optical parametric oscillator in red spectral region with periodically poled KTP,” Opt. Lett. 26,710, (2001).
[Crossref]

V. Pasiskevicius, S. Wang, J. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37,7116–7119 (1998).
[Crossref]

J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Picosecond blue light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” Submitted to J. Appl. Phys.

Piskarskas, A.

Sakuma, J.

Smilgevicius, V.

Spiekermann, S.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, “Optimizing non-resonant frequency conversion in periodically poled media,” Appl. Phys. B. 78,211–219 (2004).
[Crossref]

Tellefsen, J.

Trautmann, T.

Wang, S.

S. Wang, Fabrication and characterization of periodically-poled KTP and Rb-doped KTP for applications in the visible and UV (Doctoral Thesis in Physics, Stockholm, Sweden, 2005), http://www.laserphysics.kth.se.

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96,2023–2028 (2004).
[Crossref]

L. Chang, S. Wang, and A. Kung, “Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system,” Opt. Commun. 209,397–401 (2002).
[Crossref]

G. Hansson, H. Karlsson, S. Wang, and F. Laurell, “Transmission measurements in KTP and isomorphic compounds,” Appl. Opt. 39,5058–5069 (2000).
[Crossref]

V. Pasiskevicius, S. Wang, J. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37,7116–7119 (1998).
[Crossref]

Wiechmann, W.

M. Oka, L. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-doubled Nd:YAG laser,” IEEE Quantum. Electron. 1,859–865 (1995).
[Crossref]

Y., Asakawa

Yasui, K.

Yokota, T.

Yoshizawa, K.

Appl. Opt. (5)

Appl. Phys. B. (1)

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, “Optimizing non-resonant frequency conversion in periodically poled media,” Appl. Phys. B. 78,211–219 (2004).
[Crossref]

IEEE Quantum. Electron. (1)

M. Oka, L. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, “All solid-state continuous-wave frequency-doubled Nd:YAG laser,” IEEE Quantum. Electron. 1,859–865 (1995).
[Crossref]

J. Appl. Phys. (2)

G. Boyd and D. Kleinman, “Parametric interaction of focused Gaussian Light Beams,” J. Appl. Phys. 39,3597–3639 (1968).
[Crossref]

S. Wang, V. Pasiskevicius, and F. Laurell, “Dynamics of green light-induced infrared absorption in KTiOPO4 and periodically poled KTiOPO4,” J. Appl. Phys. 96,2023–2028 (2004).
[Crossref]

Opt. Commun. (2)

J. Dong, “Numerical modeling of CW-pumped repetively passively Q-switched Yb:YAG lasers with Cr:YAG as saturable absorber,” Opt. Commun. 226,337–344 (2003).
[Crossref]

L. Chang, S. Wang, and A. Kung, “Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system,” Opt. Commun. 209,397–401 (2002).
[Crossref]

Opt. Lett. (3)

Other (2)

J. Hirohashi, V. Pasiskevicius, and F. Laurell, “Picosecond blue light-induced infrared absorption in single-domain and periodically poled ferroelectrics,” Submitted to J. Appl. Phys.

S. Wang, Fabrication and characterization of periodically-poled KTP and Rb-doped KTP for applications in the visible and UV (Doctoral Thesis in Physics, Stockholm, Sweden, 2005), http://www.laserphysics.kth.se.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The experimental arrangement of the Q-switched 946-nm laser.

Fig. 2.
Fig. 2.

The 946 nm average power as function of absorbed pump power (a). The inset displays a typical pulse train at output powers around 950 mW. Pulse repetition rate and peak power as function of 946 nm average power (b).

Fig. 3.
Fig. 3.

Maximum output power from the BiBO crystals as function of beam waist (a). Second harmonic average power and conversion efficiency as function of fundamental average power for the 10 mm long BiBO crystal (b). Here, the focused beam waist radius was 20 μm.

Fig. 4.
Fig. 4.

Measurements done with the 5 mm long PPKTP crystal (Λ = 6.03 μm), using a focused beam waist radius of 65 μm. 473 nm average power and conversion efficiency as function of average 946-nm power (a). 473 nm average power as function of PPKTP crystal temperature, T0 = 73°C and ΔTFWHM = 7.0°C (b). 473 nm power as function of PPKTP crystal temperature, using a CW Ti-Sapphire laser as fundamental source. T0 = 73°C and ΔTFWHM = 5.2°C (c).

Fig. 5.
Fig. 5.

Ultraviolet average power and conversion efficiency as functions of 473 nm average power. The solid curves are best fits.

Fig. 6.
Fig. 6.

Ultraviolet beam in the far-field. The picture is taken with a pyroelectric sensor-based camera.

Tables (1)

Tables Icon

Table. 1. Average 473-nm power achieved with 45, 65 and 85 μm beam waist radii for three different crystal lengths at phase-matching temperatures 25°C and 73°C, respectively. All values are given in mW.

Metrics