Abstract

We show a scheme for achieving high-speed operation for carrier-injection based silicon electro-optical modulator, which is optimized for small size and high modulation depth. The performance of the device is analyzed theoretically and a 12.5-Gbit/s modulation with high extinction ratio >9dB is demonstrated experimentally using a silicon micro-ring modulator.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum. Electron. 6,1312-1317 (2000).
    [CrossRef]
  2. J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM Res. Dev. 46, 245-263 (2002).
    [CrossRef]
  3. R. A. Soref, and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
    [CrossRef]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  5. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
    [CrossRef] [PubMed]
  6. G. Gunn, "CMOS photonicsTM - SOI learns a new trick," in Proceedings of IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 7-13.
    [CrossRef]
  7. T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
    [CrossRef]
  8. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink and W. Henschel, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2006).
    [CrossRef]
  9. R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996), Chap 8.
  10. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9431-9435 (2006).
    [CrossRef] [PubMed]

2006 (2)

2005 (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

2002 (1)

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM Res. Dev. 46, 245-263 (2002).
[CrossRef]

2000 (1)

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum. Electron. 6,1312-1317 (2000).
[CrossRef]

1987 (1)

R. A. Soref, and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Bennett, B. R.

R. A. Soref, and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Bolivar, P. H.

Bond, A. E.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Choi, S. J.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Dapkus, P. D.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Davis, J. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM Res. Dev. 46, 245-263 (2002).
[CrossRef]

Henschel, W.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Kohl, P. A.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM Res. Dev. 46, 245-263 (2002).
[CrossRef]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Martin, K. P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM Res. Dev. 46, 245-263 (2002).
[CrossRef]

Meindl, J. D.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM Res. Dev. 46, 245-263 (2002).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum. Electron. 6,1312-1317 (2000).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Niehusmann, J.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Patel, C. S.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM Res. Dev. 46, 245-263 (2002).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Sadagopan, T.

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Schmidt, B.

Shakya, J.

Soref, R. A.

R. A. Soref, and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

Vörckel, A.

Wahlbrink, T.

Xu, Q.

Zarkesh-Ha, P.

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM Res. Dev. 46, 245-263 (2002).
[CrossRef]

IBM Res. Dev. (1)

J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, "Interconnect opportunities for gigascale integration," IBM Res. Dev. 46, 245-263 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum. Electron. 6,1312-1317 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Sadagopan, S. J. Choi, S. J. Choi, P. D. Dapkus, and A. E. Bond, "Optical modulators based on depletion width," IEEE Photon. Technol. Lett. 17, 567-569 (2005).
[CrossRef]

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

R. F. Pierret, Semiconductor Device Fundamentals (Addison Wesley, 1996), Chap 8.

G. Gunn, "CMOS photonicsTM - SOI learns a new trick," in Proceedings of IEEE International SOI Conference (Institute of Electrical and Electronics Engineers, New York, 2005), pp. 7-13.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Normalized transmission spectra of the modulator. Black line: transmission spectrum with 0V applied on the p-i-n junction. Blue line: transmission spectrum with 1.8V on the junction. The dc current at this voltage is 58μA. Inset: schematic of the device structure.

Fig. 2.
Fig. 2.

Calculated dynamics of the micro-ring modulator. (a): NRZ driving signal at 5 Gbit/s; V 1 = V 2 = 4V. (b): Total charge in the junction with driving voltage of (a). (c): Optical transmission of the ring resonator; tr = 192 ps; ts = t 1- t 2 = 114 ps. (d): Pre-emphasized NRZ signal at 5Gbit/s; V 1 = 6V; V'1 = 2V; V 2 = 4V. (e): Total charge in the junction with driving voltage of (d). (f): Optical transmission of the ring resonator; tr = 110 ps; ts = t 1 - t 2 ≈ 0 ps. In all the calculations, we used the experimentally measured serial resistance R = 7.7 kΩ

Fig. 3.
Fig. 3.

Schematics of the experimental setup showing the generation of the NRZ driving signal with pre-emphasis. PG: pattern generator. IGN: impulse generator network. PC: power combiner. DUT: device under test.

Fig. 4.
Fig. 4.

(a). square-wave driving signals with (red line) and without (blue and green lines) the pre-emphasis. (b): the output optical power when the modulator is driven by voltage signals shown in (a).

Fig. 5.
Fig. 5.

The waveform and eye-diagram of the electrical driving signal with pre-emphasis at 12.5 Gbit/s.

Fig. 6.
Fig. 6.

Eye-diagrams of the modulated optical output at 12.5 Gbit/s with PRBS 210-1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T = 1 1 1 + ( Q Q 0 ) 2
Q 0 = qn g V Γ n f 2 2.2 × 10 14 C
dQ ( t ) dt = i ( t ) Q ( t ) τ c = v ( t ) v j ( t ) R Q ( t ) τ c
dQ ( t ) dt = V 1 v th R Q ( t ) τ c
dQ ( t ) dt = V 2 v th R Q ( t ) τ c Q > 0
dQ ( t ) dt = V 2 Q ( t ) C j R Q ( t ) τ c Q 0

Metrics