Abstract

For Fourier domain optical coherence tomography any sample movement during camera integration causes blurring of interference fringes and as such reduction of sensitivity for flow detection. The proposed method overcomes this problem by phase-matching a reference signal to the sample motion. The interference fringes corresponding to flow signal will appear frozen across the detector whereas those of static sample structures will be blurred resulting in enhanced contrast for blood vessels. An electro-optic phase modulator in the reference arm, driven with specific phase cycles locked to the detection frequency, allows not only for qualitative but also for quantitative flow detection already from the relative signal intensities. First applications to extract in-vivo retinal flow and to visualize 3D vascularization, i.e. optical vivisection, are presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  3. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  4. G. Hausler, and M. W. Lindner, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  6. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  7. R. Leitgeb, L. Schmetterer, W. Drexler, F. Berisha, C. Hitzenberger, M. Wojtkowski, T. Bajraszewski, and A. F. Fercher, "Real-time measurement of in-vitro and in-vivo blood flow with Fourier domain optical coherence tomography," in Coherence Domain Optical Methods And Optical Coherence Tomography In Biomedicine Viii(2004), pp. 141-146.
  8. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
    [CrossRef] [PubMed]
  9. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
    [CrossRef]
  10. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
    [CrossRef] [PubMed]
  11. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
    [CrossRef]
  12. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13,3931-3944 (2005).
    [CrossRef] [PubMed]
  13. S. Makita, Y. Yasuno, T. Endo, M. Itoh, and T. Yatagai, "Polarization contrast imaging of biological tissues by polarization-sensitive Fourier-domain optical coherence tomography," Appl. Opt. 45, 1142-1147 (2006).
    [CrossRef] [PubMed]
  14. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
    [CrossRef] [PubMed]
  15. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
    [CrossRef] [PubMed]
  16. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
    [CrossRef] [PubMed]
  17. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
    [CrossRef] [PubMed]
  18. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  19. R. A. Leitgeb, W. Drexler, B. Povazay, B. Hermann, H. Sattmann, and A. F. Fercher, "Spectroscopic Fourier Domain Optical Coherence Tomography: Principle, limitations, and applications," in Coherence Domain Optical Methods And Optical Coherence Tomography In Biomedicine Ix(2005), pp. 151-158.
  20. J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
    [CrossRef] [PubMed]
  21. L. Schmetterer, and M. Wolzt, "Ocular blood flow and associated functional deviations in diabetic retinopathy," Diabetologia 42, 387-405 (1999).
    [CrossRef] [PubMed]
  22. C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, "Choroidal blood flow in the foveal region of the human disc," Invest. Ophthalmol. Visual Sci. 35, 4273-4281 (1994).
  23. E. Friedman, "A hemodynamic model of the pathogenesis of age-related macular degeneration," Am. J. Ophthalmol. 124, 677-682 (1997).
    [PubMed]
  24. C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest. Ophthalmol. Visual Sci. 26,1124-1132 (1985).
  25. S. Yazdanfar, A. M. Rollins, and J. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppleroptical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
    [PubMed]
  26. J. W. You, T. C. Chen, M. Mujat, B. H. Park, and J. F. de Boer, "Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging," Opt. Express 14, 6739-6748 (2006).
    [CrossRef] [PubMed]
  27. J. K. Barton, and S. Stromski, "Flow measurement without phase information in optical coherence tomography images," Opt. Express 13, 5234-5239 (2005).
    [CrossRef] [PubMed]
  28. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
    [CrossRef] [PubMed]
  29. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006).
    [CrossRef] [PubMed]
  30. R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, "Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry," SPIE Proceedings 4619, 16-21 (2002).
    [CrossRef]
  31. A. N. S. Institute, "American National Standards for Safe Use of Lasers, ANSI Z.136.1," (2000).
  32. P. Thevenaz, U. E. Ruttimann, and M. Unser, "A Pyramid Approach to Subpixel Registration Based on Intensity," IEEE Transaction On Image Processing 7, 27-41 (1998).
    [CrossRef]
  33. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
    [CrossRef] [PubMed]

2006 (4)

2005 (6)

J. K. Barton, and S. Stromski, "Flow measurement without phase information in optical coherence tomography images," Opt. Express 13, 5234-5239 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13,3931-3944 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (5)

2002 (4)

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, "Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry," SPIE Proceedings 4619, 16-21 (2002).
[CrossRef]

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

L. Schmetterer, and M. Wolzt, "Ocular blood flow and associated functional deviations in diabetic retinopathy," Diabetologia 42, 387-405 (1999).
[CrossRef] [PubMed]

1998 (2)

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A Pyramid Approach to Subpixel Registration Based on Intensity," IEEE Transaction On Image Processing 7, 27-41 (1998).
[CrossRef]

G. Hausler, and M. W. Lindner, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

1997 (1)

E. Friedman, "A hemodynamic model of the pathogenesis of age-related macular degeneration," Am. J. Ophthalmol. 124, 677-682 (1997).
[PubMed]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1994 (1)

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, "Choroidal blood flow in the foveal region of the human disc," Invest. Ophthalmol. Visual Sci. 35, 4273-4281 (1994).

1985 (1)

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest. Ophthalmol. Visual Sci. 26,1124-1132 (1985).

Ahlers, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

Bachmann, A. H.

Bajraszewski, T.

Barton, J. K.

Berisha, F.

Bouma, B. E.

Bower, B. A.

Cense, B.

Chen, T. C.

Choi, S.

Costa, V. P.

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

Cranstoun, S. D.

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, "Choroidal blood flow in the foveal region of the human disc," Invest. Ophthalmol. Visual Sci. 35, 4273-4281 (1994).

de Boer, J. F.

Drexler, W.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Endo, T.

Fercher, A.

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, "Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry," SPIE Proceedings 4619, 16-21 (2002).
[CrossRef]

Fercher, A. F.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Flammer, J.

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

Friedman, E.

E. Friedman, "A hemodynamic model of the pathogenesis of age-related macular degeneration," Am. J. Ophthalmol. 124, 677-682 (1997).
[PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Gotzinger, E.

Grunwald, J. E.

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, "Choroidal blood flow in the foveal region of the human disc," Invest. Ophthalmol. Visual Sci. 35, 4273-4281 (1994).

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest. Ophthalmol. Visual Sci. 26,1124-1132 (1985).

Hausler, G.

G. Hausler, and M. W. Lindner, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hermann, B.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

Hitzenberger, C.

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, "Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry," SPIE Proceedings 4619, 16-21 (2002).
[CrossRef]

Hitzenberger, C. K.

Hong, Y.

Itoh, M.

Izatt, J.

S. Yazdanfar, A. M. Rollins, and J. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppleroptical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[PubMed]

Izatt, J. A.

Jones, S. M.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

Krieglstein, G. K.

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

Lasser, T.

Laut, S.

Leitgeb, R.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, "Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry," SPIE Proceedings 4619, 16-21 (2002).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

Leitgeb, R. A.

Lindner, M. W.

G. Hausler, and M. W. Lindner, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Makita, S.

Michels, S.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

Mujat, M.

Nassif, N.

Olivier, S. S.

Orgul, S.

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

Orzalesi, N.

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

Park, B. H.

Petrig, B. L.

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, "Choroidal blood flow in the foveal region of the human disc," Invest. Ophthalmol. Visual Sci. 35, 4273-4281 (1994).

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest. Ophthalmol. Visual Sci. 26,1124-1132 (1985).

Pierce, M. C.

Pircher, M.

Povazay, B.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

Renard, V. X.

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

Riva, C. E.

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, "Choroidal blood flow in the foveal region of the human disc," Invest. Ophthalmol. Visual Sci. 35, 4273-4281 (1994).

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest. Ophthalmol. Visual Sci. 26,1124-1132 (1985).

Rollins, A. M.

S. Yazdanfar, A. M. Rollins, and J. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppleroptical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[PubMed]

Ruttimann, U. E.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A Pyramid Approach to Subpixel Registration Based on Intensity," IEEE Transaction On Image Processing 7, 27-41 (1998).
[CrossRef]

Sacu, S.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

Sattmann, H.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

Schmetterer, L.

Schmidt-Erfurth, U.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

Scholda, C.

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Serra, L. M.

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

Sinclair, S. H.

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest. Ophthalmol. Visual Sci. 26,1124-1132 (1985).

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Stefansson, E.

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

Sticker, M.

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, "Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry," SPIE Proceedings 4619, 16-21 (2002).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

Stromski, S.

Sutoh, Y.

Tearney, G. J.

Thevenaz, P.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A Pyramid Approach to Subpixel Registration Based on Intensity," IEEE Transaction On Image Processing 7, 27-41 (1998).
[CrossRef]

Unser, M.

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A Pyramid Approach to Subpixel Registration Based on Intensity," IEEE Transaction On Image Processing 7, 27-41 (1998).
[CrossRef]

Werner, J. S.

White, B. R.

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, "Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry," SPIE Proceedings 4619, 16-21 (2002).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

Wolzt, M.

L. Schmetterer, and M. Wolzt, "Ocular blood flow and associated functional deviations in diabetic retinopathy," Diabetologia 42, 387-405 (1999).
[CrossRef] [PubMed]

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

S. Yazdanfar, A. M. Rollins, and J. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppleroptical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[PubMed]

You, J. W.

Yun, S. H.

Zawadzki, R. J.

Zhao, M. T.

Am. J. Ophthalmol. (1)

E. Friedman, "A hemodynamic model of the pathogenesis of age-related macular degeneration," Am. J. Ophthalmol. 124, 677-682 (1997).
[PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

S. Yazdanfar, A. M. Rollins, and J. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppleroptical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003).
[PubMed]

Diabetologia (1)

L. Schmetterer, and M. Wolzt, "Ocular blood flow and associated functional deviations in diabetic retinopathy," Diabetologia 42, 387-405 (1999).
[CrossRef] [PubMed]

IEEE Transaction On Image Processing (1)

P. Thevenaz, U. E. Ruttimann, and M. Unser, "A Pyramid Approach to Subpixel Registration Based on Intensity," IEEE Transaction On Image Processing 7, 27-41 (1998).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (3)

C. E. Riva, S. D. Cranstoun, J. E. Grunwald, and B. L. Petrig, "Choroidal blood flow in the foveal region of the human disc," Invest. Ophthalmol. Visual Sci. 35, 4273-4281 (1994).

C. E. Riva, J. E. Grunwald, S. H. Sinclair, and B. L. Petrig, "Blood velocity and volumetric flow rate in human retinal vessels," Invest. Ophthalmol. Visual Sci. 26,1124-1132 (1985).

U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005).
[CrossRef]

J. Biomed. Opt. (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

G. Hausler, and M. W. Lindner, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Ophthalmology (1)

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (11)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 13,3931-3944 (2005).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

J. W. You, T. C. Chen, M. Mujat, B. H. Park, and J. F. de Boer, "Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging," Opt. Express 14, 6739-6748 (2006).
[CrossRef] [PubMed]

J. K. Barton, and S. Stromski, "Flow measurement without phase information in optical coherence tomography images," Opt. Express 13, 5234-5239 (2005).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004).
[CrossRef] [PubMed]

A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

Opt. Lett. (5)

Prog. Retin. Eye Res. (1)

J. Flammer, S. Orgul, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, V. X. Renard, and E. Stefansson, "The impact of ocular blood flow in glaucoma," Prog. Retin. Eye Res. 21, 359-393 (2002).
[CrossRef] [PubMed]

SPIE Proceedings (1)

R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, and A. Fercher, "Flow Velocity Measurements by Frequency Domain Short Coherence Interferometry," SPIE Proceedings 4619, 16-21 (2002).
[CrossRef]

Other (3)

A. N. S. Institute, "American National Standards for Safe Use of Lasers, ANSI Z.136.1," (2000).

R. Leitgeb, L. Schmetterer, W. Drexler, F. Berisha, C. Hitzenberger, M. Wojtkowski, T. Bajraszewski, and A. F. Fercher, "Real-time measurement of in-vitro and in-vivo blood flow with Fourier domain optical coherence tomography," in Coherence Domain Optical Methods And Optical Coherence Tomography In Biomedicine Viii(2004), pp. 141-146.

R. A. Leitgeb, W. Drexler, B. Povazay, B. Hermann, H. Sattmann, and A. F. Fercher, "Spectroscopic Fourier Domain Optical Coherence Tomography: Principle, limitations, and applications," in Coherence Domain Optical Methods And Optical Coherence Tomography In Biomedicine Ix(2005), pp. 151-158.

Supplementary Material (7)

» Media 1: MOV (1664 KB)     
» Media 2: MOV (1659 KB)     
» Media 3: MOV (1853 KB)     
» Media 4: MOV (1755 KB)     
» Media 5: MOV (2521 KB)     
» Media 6: MOV (3645 KB)     
» Media 7: MOV (1774 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Typical high resolution retinal tomogram with “empty” blood vessels (*) in the optic nerve head region. Tomogram size: 12mm x 1mm (lateral x depth) with 8.5μm axial resolution (in air).

Fig. 2.
Fig. 2.

Normalized signal attenuation A as a function of Δz, the displacement of a sample surface during the integration time, and z, the axial coordinate in dB. The three plots correspond to a Δk FWHM of 0.2/μm, 1/μm and 2/μm. For larger spectral bandwidths, the signal decays faster with Δz and the splitting occurs earlier.

Fig. 3.
Fig. 3.

(a). Maximum value in z-direction of the normalized signal attenuation A as a function of displacement Δz for the same parameters as in Fig. 2. (b) A as a function of sample velocity for the static case (solid line) and with a reference velocity offset VR (dashed line). As indicated, the reference velocity offset reduces static structure intensity (green arrow) and enhances moving structure intensity (red arrow).

Fig. 4.
Fig. 4.

(a). Signal attenuation A for the static (solid line) and shifted case (dashed line). The red shaded region indicates the intersection of the main lobes. The green dash-dotted line indicates the MPA for a typical local signal in the tomogram. (b) Velocity as a function of the quotient ΔA of the shifted and the static case within the red shaded area (red solid line). The curve allows associating to a given ΔA value a unique sample velocity VS . The velocity error δV [Eq. (14)] can be read from the dashed line. Within the green dash-dotted lines it is possible attributing a unique velocity value (see text for details).

Fig. 5.
Fig. 5.

Optical setup (see text for details).

Fig. 6.
Fig. 6.

Normalized signal attenuation A for different samples due to the applied EOM phase slope: mirror (circles), in-vivo retinal structure (triangles) for ROIs in Figs. 7(a)-7(c) compared to theory (solid line) [Eq. (6)]. Crosses represent the maximum possible attenuation (MPA) of the static structure in Fig. 7(a).

Fig. 7.
Fig. 7.

Time sequence (after registration) with a three-stage EOM signal applied showing the same vertical position on the retina with stepwise increasing EOM voltage; all tomograms in log-scale. (a) (1.8 MB) Static retinal structure which does not change with increasing phase shift applied,[Media 1] (b,c) (1.7 MB, 1.7 MB) phase-shifted tomograms with opposite phase shifting directions and [Media 2][Media 3](d) (1.9 MB) calculated tomogram representing Îφ/Î. Axial flow directions are clearly visible for all four vessels. Tomogram size: 2.75mm x 1.24mm (lateral x depth) with 8.5μm axial resolution (in air). [Media 4]

Fig. 8.
Fig. 8.

(1.8 MB) Time sequence of Fig. 7(a)-7(c) in RGB representation. [Media 5]

Fig. 9.
Fig. 9.

Velocity determination by unambiguous differential velocity mapping (see §2.3). For each differential image (lhs) a corresponding theoretical ΔA curve (rhs) is shown. The blue and red solid lines correspond to the selected vessels on the lhs. The horizontal lines and circles on the rhs indicate possible velocity values according to the intensity level in the corresponding tomogram. The ambiguity is removed by looking for the common velocity in all three differential maps as indicated by the respective vertical lines on the rhs. The green dashed lines indicate the MPA limit of -18.4dB. Tomogram size: 3mm x 1.65mm (lateral x depth) with 8.5μm axial resolution (in air).

Fig. 10.
Fig. 10.

(lhs) Velocity map obtained by differential analysis of Fig. 9. with zoomed and average-filtered ROIs of vessel regions. (rhs) Velocity profiles extracted along the indicated lines in the vessel regions.

Fig. 11.
Fig. 11.

(a). RGB fundus image showing different axial flow directions in blue and red, and the static structure in green. Size: 2.4mm x 1.7mm. (b) (2.5 MB) Movie of merged 3D volumes of positively and negatively shifted data sets in red and blue respectively. Tomogram size: 2.4mm x 1.7mm x 1.1mm (length x width x depth) with 8.5μm axial resolution (in air). [Media 6]

Fig. 12.
Fig. 12.

(3.6 MB) ONH blood vessel structure of Fig. 11 in an anaglyph stereo representation (red-cyan goggles). [Media 7]

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N ( k ) = τγ ( I R ( k ) + I S ( k ) ) + 2 γ I S ( k ) I R ( k ) τ 2 τ 2 cos ( 2 k z 0 + φ ( t ) ) dt ,
N AC ( k ) = N AC ( k , ΔΦ = 0 ) sin c ( ΔΦ 2 π ) , with
N AC ( k , ΔΦ = 0 ) = 2 γτ I S ( k ) I R ( k ) cos ( 2 k z 0 ) ,
N ̂ AC ( z ) = N ̂ AC ( z , ΔΦ = 0 ) 1 η rect ( z η ) e j β η z ,
N ̂ AC ( z ) 1 η e α 2 ( z′ ± 2 z 0 ) 2 rect ( z z′ η ) e j β η ( z z′ ) dz ,
N ̂ AC ( z ) j e j β η z β [ e α 2 ( z′ 2 z 0 ) 2 e j β η z′ m = 0 ( jαη β ) m H m ( α ( z′ 2 z 0 ) ) ] z′ = z η / 2 z′ = z + η / 2 .
N ̂ AC ( z ) 2 e α 2 η 2 4 β e α 2 ( z 2 z 0 ) 2 cosh ( α 2 2 ( z 2 z 0 ) η ) cos ( β ) .
N ̂ AC ( z = 2 z 0 ) e α 2 η 2 4 sin c ( β 2 π ) = e α 2 ( Δz ) 2 sin c ( k 0 Δ z π ) .
Δ Φ R = Δ Φ S
Δ z R = β 2 k 0 = π Δ V V π ( k 0 ) 2 k 0 .
Î φ Î 0 = A ( V S V R ) A ( V S ) = f ( V S ) ,
V S = f 1 ( Î φ Î 0 ) .
Q + δQ = log ( Î φ + δÎ ) log ( Î 0 + δÎ )
log ( Î S A ( V S V R ) + δÎ ) log ( Î S A ( V S ) + δÎ ) ,
δQ = 1 SNR ( A ( V S V R ) ) 2 + ( A ( V S ) ) 2 + O ( δ Î 2 ) ,
δV | V S = δQ ( d ( ΔA ) dV ) 1 | V S .

Metrics