Abstract

We evaluate the security performance of the recently proposed “stealth” approach to covert communications over a public fiber-optical network. We present quantitative security analysis to assess the vulnerability of such systems against different attacks executed by an eavesdropper. We demonstrate the security advantage of the system by examining the BER/SNR performance as a function of the fidelity of the decoder used by an eavesdropper. Effective key length is constructed as a security metric to gauge the level of confidentiality implicit in the secure transmission.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A method for secure communications over a public fiber-optical network

Bernard B. Wu and Evgenii E. Narimanov
Opt. Express 14(9) 3738-3751 (2006)

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Ben Wu, Zhenxing Wang, Bhavin J. Shastri, Matthew P. Chang, Nicholas A. Frost, and Paul R. Prucnal
Opt. Express 22(1) 954-961 (2014)

Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering

Xuezhi Hong, Dawei Wang, Lei Xu, and Sailing He
Opt. Express 18(12) 12415-12420 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Jamil, “Steganography: the art of hiding information in plain sight,” IEEE Potentials 18,10–12 (1999)
    [Crossref]
  2. A.J. Viterbi, “Spread spectrum communications - myths and realities,” IEEE Commun. Mag. 17,11–18 (1979)
    [Crossref]
  3. B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14,3738–3751 (2006)
    [Crossref] [PubMed]
  4. A.J. Viterbi, CDMA: Principles of Spread Spectrum Communications, Addison-Wesley, Reading, Massachusetts (1995)
  5. J. Shah, “Optical CDMA,” Opt. Photon. News 14,42–47 (2003)
    [Crossref]
  6. Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, A. M. Weiner, R. V. Roussev, C. Langrock, and M. M. Fejer, “Four user, 2.5 Gb/s, spectrally coded O-CDMA system demonstration using low power nonlinear processing,” J. Lightwave Technol. 23,143–158 (2005)
    [Crossref]
  7. Z. Jiang, D.E. Leaird, and A.M. Weiner, “ Experimental Investigation of Security Issues in OCDMA,” OFC 2006 OThT2
  8. T. H. Shake, “Confidentiality Performance of Spectral-Phase-Encoded Optical CDMA,” J. Lightwave Technol. 23,1652–1663
  9. G. P. Agrawal, Fiber-Optical Communication Systems 3rd Edition (Wiley-Interscience, 2002)
    [PubMed]
  10. C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal27379–423,623–656 (1948).

2006 (1)

2005 (1)

2003 (1)

J. Shah, “Optical CDMA,” Opt. Photon. News 14,42–47 (2003)
[Crossref]

1999 (1)

T. Jamil, “Steganography: the art of hiding information in plain sight,” IEEE Potentials 18,10–12 (1999)
[Crossref]

1979 (1)

A.J. Viterbi, “Spread spectrum communications - myths and realities,” IEEE Commun. Mag. 17,11–18 (1979)
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optical Communication Systems 3rd Edition (Wiley-Interscience, 2002)
[PubMed]

Fejer, M. M.

Jamil, T.

T. Jamil, “Steganography: the art of hiding information in plain sight,” IEEE Potentials 18,10–12 (1999)
[Crossref]

Jiang, Z.

Langrock, C.

Leaird, D. E.

Leaird, D.E.

Z. Jiang, D.E. Leaird, and A.M. Weiner, “ Experimental Investigation of Security Issues in OCDMA,” OFC 2006 OThT2

Narimanov, E. E.

Roussev, R. V.

Seo, D. S.

Shah, J.

J. Shah, “Optical CDMA,” Opt. Photon. News 14,42–47 (2003)
[Crossref]

Shake, T. H.

Shannon, C. E.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal27379–423,623–656 (1948).

Viterbi, A.J.

A.J. Viterbi, “Spread spectrum communications - myths and realities,” IEEE Commun. Mag. 17,11–18 (1979)
[Crossref]

A.J. Viterbi, CDMA: Principles of Spread Spectrum Communications, Addison-Wesley, Reading, Massachusetts (1995)

Weiner, A. M.

Weiner, A.M.

Z. Jiang, D.E. Leaird, and A.M. Weiner, “ Experimental Investigation of Security Issues in OCDMA,” OFC 2006 OThT2

Wu, B. B.

Yang, S.-D.

IEEE Commun. Mag. (1)

A.J. Viterbi, “Spread spectrum communications - myths and realities,” IEEE Commun. Mag. 17,11–18 (1979)
[Crossref]

IEEE Potentials (1)

T. Jamil, “Steganography: the art of hiding information in plain sight,” IEEE Potentials 18,10–12 (1999)
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Photon. News (1)

J. Shah, “Optical CDMA,” Opt. Photon. News 14,42–47 (2003)
[Crossref]

Other (4)

A.J. Viterbi, CDMA: Principles of Spread Spectrum Communications, Addison-Wesley, Reading, Massachusetts (1995)

G. P. Agrawal, Fiber-Optical Communication Systems 3rd Edition (Wiley-Interscience, 2002)
[PubMed]

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal27379–423,623–656 (1948).

Z. Jiang, D.E. Leaird, and A.M. Weiner, “ Experimental Investigation of Security Issues in OCDMA,” OFC 2006 OThT2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Secure transmission over public fiber-optical communication network (Broadcast Star topology) Encryption of secure signal is performed at the physical layer by OCDMA encoder [3].

Fig. 2
Fig. 2

Intensity autocorrelation for a) secure signal and noise only, b) public signal and noise only, c) public signal, secure signal and noise. Simulations are performed where flat top band-limited pulses of bandwidth W (Sinc pulse profile in time domain) are used in both the public network and secure channel. The simulation parameters (see Appendix) are given by: Ps / Pp = 3, W = 0.6 rad /ps, C = 128 chips, Ts = 1320 ps, Tp = 60 ps and Nadd / Pp = 0.01.

Fig. 3
Fig. 3

a) Autocorrelation for composite signal obtain in simulations (red) and using analytical theory (blue) where Ps / Pp = 15, C=128 chips, Ts = 1320 ps and Nadd / Pp = 0.01. b) Autocorrelation comparison before (blue) and after (green) secure signal is applied to the public network (with the public signal and noise). Secure signal uses a spreading factor C=2048 chips, Ts = 21420 ps, Ps / Pp = 15 and Nadd / Pp = 0.01. (See Appendix)

Fig. 4
Fig. 4

The comparison of Q-factor for the secure channel vs. the fraction of correct chips (∏) present in an eavesdropper phase mask with public network (red, lower curve) and without public network (blue, upper curve). Symbols represent the simulation values and curves represent analytical values. The parameters are C=128 chips, Ts = 1320 ps and Ps : Pp = 3, Nadd : Pp = 0.01.

Fig. 5
Fig. 5

Effective key length vs. C (number of chips in a phase mask) for various values of SNR signal-to-noise ratio.

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

R ff ( τ ) = 1 Γ τ Γ 2 + τ Γ 2 f ( t ) f ( t τ ) dt
f ( t ) = s ( t ) + p ( t ) + n ( t ) 2
R ff ( τ ) = 1 Γ τ Γ 2 + τ Γ 2 dt · s ( t ) 2 s ( t τ ) 2 + p ( t ) 2 p ( t τ ) 2 + n ( t ) 2 n ( t τ ) 2 + s ( t ) 2 ( p ( t τ ) 2 + n ( t τ ) 2 ) + p ( t ) 2 ( s ( t τ ) 2 + n ( t τ ) 2 ) + n ( t ) 2 ( s ( t τ ) 2 + p ( t τ ) 2 ) + ( s ( t ) s ( t τ ) * p ( t ) * p ( t τ ) + c . c ) + [ n ( t ) n ( t τ ) * ( s ( t ) * s ( t τ ) + p ( t ) * p ( t τ ) ) + c . c ]
Q = I I 0 σ + σ 0
a ( t ) = s ˜ ( t ) + p ˜ ( t ) + n ( t )
I ( t ) = s ˜ ( t ) 2 + p ˜ ( t ) 2 + n ( t ) 2
I ( t ) 2 = s ˜ ( t ) 4 + p ˜ ( t ) 4 + n ( t ) 4 + 4 ( s ˜ ( t ) 2 n ( t ) 2 + p ˜ ( t ) 2 n ( t ) 2 + s ˜ ( t ) 2 p ˜ ( t ) 2 )
σ ( t ) = s ˜ ( t ) 4 + p ˜ ( t ) 4 + n ( t ) 4 ( s ˜ ( t ) 2 2 + p ˜ ( t ) 2 2 + n ( t ) 2 2 ) + 2 ( s ˜ ( t ) 2 n ( t ) 2 + p ˜ ( t ) 2 n ( t ) 2 + s ˜ ( t ) 2 p ˜ ( t ) 2 )
s ˜ ( t ) = ( ψ 1 h ˜ ( t + T s ) + ( 1 ψ 1 ) k ˜ ( t + T s ) ) e 1 + h ˜ ( t ) e 3 + ( ψ 2 h ˜ ( t T s ) + ( 1 ψ 2 ) k ˜ ( t T s ) ) e 2
s ˜ ( t ) 2 = h ˜ ( t ) 2 + 1 2 ( h ˜ ( t + T s ) 2 + h ˜ ( t T s ) 2 + k ˜ ( t + T s ) 2 + k ˜ ( t T s ) 2 )
s ˜ ( t ) 4 = h ˜ ( t ) 4 + 1 2 ( h ˜ ( t + T s ) 4 + h ˜ ( t T s ) 4 + k ˜ ( t + T s ) 4 + k ˜ ( t T s ) 4 )
+ 2 h ˜ ( t ) 2 ( k ˜ ( t + T s ) 2 + k ˜ ( t T s ) 2 ) + h ˜ ( t + T s ) 2 k ˜ ( t T s ) 2 + h ˜ ( t T s ) 2 k ˜ ( t + T s ) 2
+ 2 h ˜ ( t ) 2 h ˜ ( t T s ) 2 + 2 h ˜ ( t ) 2 h ˜ ( t + T s ) 2 + h ˜ ( t T s ) 2 h ˜ ( t + T s ) 2 + k ˜ ( t T s ) 2 k ˜ ( t + T s ) 2
h ˜ ( t ) = P s C Sinc ( Ω 2 t ) n = 1 C e i ( Ω t [ n C + 1 2 ] + θ n φ n )
h ˜ ( t ) 2 = P s C 2 Sinc 2 ( Ω 2 t ) ( C + n m = 1 C 2 e i Ω t ( n m ) )
k ˜ ( t ) 2 = P s C Sinc 2 ( Ω 2 t )
h ˜ ( t 1 ) 2 h ˜ ( t 2 ) 2 = P s 2 C 4 Sin c 2 ( Ω 2 t 1 ) Sin c 2 ( Ω 2 t 2 ) .
( 4 n m r s = 1 C e i Ω ( t 1 ( n r ) + t 2 ( m s ) ) ) + ( 2 3 ( n = m ) r s = 1 C e i Ω ( t 1 ( n r ) + t 2 ( m s ) ) ) + ( 2 ( n = r ) m s = 1 ( n = s ) m r = 1 ( m = r ) n s = 1 ( m = s ) n r = 1 C e i Ω ( t 1 ( n r ) + t 2 ( m s ) ) ) + ( 2 2 ( n = m = r ) s = 1 ( n = m = s ) r = 1 C e i Ω ( t 1 ( n r ) + t 2 ( m s ) ) ) + ( 2 ( n = m ) ( r = s ) = 1 C e i Ω ( t 1 ( n r ) + t 2 ( m s ) ) ) + ( ( n = s ) ( m = r ) = 1 C e i Ω ( t 1 ( n r ) + t 2 ( m s ) ) ) + C 2
k ˜ ( t 1 ) 2 k ˜ ( t 2 ) 2 = P s 2 C 4 Sinc 2 ( Ω 2 t 1 ) Sinc 2 ( Ω 2 t 2 ) . ( C 2 + ( n = s ) ( m = r ) = 1 C e i Ω ( t 1 ( n r ) + t 2 ( m s ) ) )
p ˜ ( t ) 2 = P p 2 C k Sin c 2 ( Ω 2 ( t kT p ) )
p ˜ ( t ) 4 = u v P p 2 2 C 4 Sin c 2 ( Ω 2 ( t uT p ) ) Sin c 2 ( Ω 2 ( t vT p ) ) . ( C 2 + ( n = s ) ( m = r ) = 1 C e i Ω ( ( t uT p ) ( n r ) + ( t vT p ) ( m s ) ) ) + u P p 2 2 C 4 Sin c 2 ( Ω 2 ( t uT p ) ) ( 2 C 2 C )
y ω = x ω + n ω = y ω e i ( ϕ x + δϕ )
N ω = 2 π δ ϕ 2 ~ 2 π P ω P n
N eff = C Log 2 ( N ω ) = C Log 2 ( 2 πSNR )
s ( t ) = u ( ψ u h ( t uT s ) + ( 1 ψ u ) k ( t uT s ) ) e u
p ( t ) = r ψ r ( P p Sin c ( W 2 ( t rT p ε ) ) ) e r
h ( t ) = P s C Sin c ( Ω 2 t ) n = 1 C e i ( Ω t [ n C + 1 2 ] + φ n )
s ( t ) 2 = u P s C Sin c 2 ( Ω 2 ( t uT s ) )
p ( t ) 2 = r T p 2 T p 2 P p 2 T p Sin c 2 ( W 2 ( t rT p ε ) )
n ( t ) 2 = N add
s ( t ) 2 s ( t τ ) 2 = 1 2 u , v ( 1 + δ uv ) h ( t uT s ) 2 h ( t τ vT s ) 2
+ ( 1 δ uv ) [ h ( t uT s ) 2 h ( t τ vT s ) 2 + h ( t uT s ) h ( t τ uT s ) * h ( t vT s ) * h ( t τ vT s ) + h ( t uT s ) h ( t τ u T s ) * h ( t vT s ) * h ( t τ ν T s ) ]
A ( t 1 ) = P s C Sin c 2 ( Ω 2 t 1 )
B ( t 1 , t 2 ) = P s C 2 Sin c ( Ω 2 t 1 ) Sin c ( Ω 2 t 2 ) n = 1 C Cos [ Ω ( n C + 1 2 ) ( t 1 t 2 ) ]
X ( t 1 , t 2 , t 3 , t 4 ) = P s 2 C 4 Sin c ( Ω 2 t 1 ) Sin c ( Ω 2 t 2 ) Sin c ( Ω 2 t 3 ) Sin c ( Ω 2 t 4 ) .
[ ( n , m = 1 C Cos [ Ω ( n ( t 2 t 1 ) + m ( t 4 t 3 ) + ( t 1 t 2 + t 3 t 4 ) ( C + 1 ) 2 ) ] ) + ( n , m = 1 n m C Cos [ Ω ( n ( t 2 t 3 ) + m ( t 4 t 1 ) + ( t 1 t 2 + t 3 t 4 ) ( C + 1 ) 2 ) ] ) ]
s ( t ) 2 s ( t τ ) 2 = 1 2 u , v ( 1 + δ uv ) X ( t uT s , t uT s , t vT s , t vT s ) + ( 1 δ uv ) ( A ( t uT s ) A ( t τ vT s ) + B ( t uT s , t τ uT s ) B ( t τ vT s , t vT s ) + X ( t uT s , t τ uT s , t τ vT s , t vT s )
p ( t ) 2 p ( t τ ) 2
= 1 4 r , v ( 1 + δ rv ) P p 2 Sin c 2 ( W 2 ( t rT p ) ) Sin c 2 ( W 2 ( t τ vT p ) )
+ ( 1 δ rv ) [ P p 2 Sin c ( W 2 ( t rT p ) ) Sin c ( W 2 ( t vT p ) ) . Sin c ( W 2 ( t τ rT p ) ) Sin c ( W 2 ( t τ vT p ) ) ]
n ( t ) 2 n ( t τ ) 2 = { 2 N add 2 τ = 0 N add 2 otherwise }
s ( t ) s ( t τ ) * = u B ( t uT s , t τ uT s )
p ( t ) p ( t τ ) * = r T p 2 T p 2 P p 2 T p Sin c ( W 2 ( t rT p ε ) ) Sin c ( W 2 ( t rT p ε τ ) )

Metrics