Abstract

This work analyses and solves for issues encountered when retrieving surface emissivity in LWIR (750 to 1250 cm-1) and MWIR (2000 to 3500 cm-1) bands under outdoor conditions. The Spectral Smoothness method, which takes advantage of high spectral resolution measurements to solve for temperature emissivity separation, and which has already proven its efficiency in the LWIR domain, was applied in an experimental campaign to assess its ability to operate both in the LWIR and MWIR domains. In the MWIR band, directional behaviour of surface emissivity is shown to be a source of systematic errors in the retrieved emissivity and a new method, called SmaC (SMoothness And Continuity), corrects for this error by providing quantitative estimates on the deviation of the surface from Lambertian behavior.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Kanani, Utilisation de la tr`es haute r’esolution spectrale pour la mesure en environnement ext’erieur de l’´emissivit’e de surface dans la bande infrarouge 313 μm. M’ethodes et validation exp’erimentale, Th`ese de Doctorat, (Universit’e Louis Pasteur, Strasbourg N4946, 2005).
  2. P. Dash, F.-M. G¨ottsche, F.-S. Olesen and H. Fischer, "Land surface temperature and emissivity estimation from passive sensor data: theory and practice current trends," Int. J. Remote Sens. 23,2563-2594 (2002).
    [CrossRef]
  3. C. C. Borel, "Surface emissivity and temperature retrieval for a hyperspectral sensor," in Proceedings of IEEE Conference on Geoscience and Remote Sensing, (IEEE, 1998) pp. 504-509.
  4. C. Salvaggio and C. J. Miller, "Comparison of field and laboratory collected midwave and longwave infrared emissivity spectra / data reduction techniques," Proc. SPIE,  4381, 549-558 (2001).
    [CrossRef]
  5. N. Bower, Measurement of Land Surface Emissivity and Temperature in the Thermal Infrared using a Ground- Based Interferometer, PhD Thesis, (Curtin University of Technology, Perth, Australia, 2001).
    [PubMed]
  6. P. M. Ingram and A. H. Muse, "Sensitivity of Iterative Spectrally Smooth Temperature / Emissivity Separation to Algorithmic Assumptions and Measurement Noise," IEEE Transaction on Geoscience and Remote Sensing 39, 2158-2167 (2001).Q1
    [CrossRef]
  7. Z.-L. Li, F. Becker, M. Stoll, and Z. Wan, "Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images," Remote Sens. Environ. 69, 197-214 (1999).Q2
    [CrossRef]
  8. J. Cuenca and J. A. Sobrino, "Experimental measurements for studying angular and spectral variation of thermal infrared emissivity," Appl. Opt. 43, 4568-4602 (2004).
    [CrossRef]
  9. W. C. Snyder, Z. Wan, Y. Zhang and Y.-Z. Feng, "Thermal Infrared (3-14 μm) Bidirectional ReflectanceMeasurements of Sands and Soils," Remote Sens. Environ. 60, 101-109 (1997).Q3
    [CrossRef]
  10. G. Anderson, A. Berk, P. Acharya, M. Matthew, L. Bernstein, J. Chetwynd, H. Dothe, S. Adler-Golden, A. Ratkowski, G. Felde, J. Gardner, M. Hoke, S. Richtsmeier, B. Pukall, J. Mello and L. Leong, "MODTRAN4: Radiative transfer modeling for remote sensing," Proc. SPIE 4049 (2000).Q4
    [CrossRef]

2004

J. Cuenca and J. A. Sobrino, "Experimental measurements for studying angular and spectral variation of thermal infrared emissivity," Appl. Opt. 43, 4568-4602 (2004).
[CrossRef]

2002

P. Dash, F.-M. G¨ottsche, F.-S. Olesen and H. Fischer, "Land surface temperature and emissivity estimation from passive sensor data: theory and practice current trends," Int. J. Remote Sens. 23,2563-2594 (2002).
[CrossRef]

2001

C. Salvaggio and C. J. Miller, "Comparison of field and laboratory collected midwave and longwave infrared emissivity spectra / data reduction techniques," Proc. SPIE,  4381, 549-558 (2001).
[CrossRef]

P. M. Ingram and A. H. Muse, "Sensitivity of Iterative Spectrally Smooth Temperature / Emissivity Separation to Algorithmic Assumptions and Measurement Noise," IEEE Transaction on Geoscience and Remote Sensing 39, 2158-2167 (2001).Q1
[CrossRef]

2000

G. Anderson, A. Berk, P. Acharya, M. Matthew, L. Bernstein, J. Chetwynd, H. Dothe, S. Adler-Golden, A. Ratkowski, G. Felde, J. Gardner, M. Hoke, S. Richtsmeier, B. Pukall, J. Mello and L. Leong, "MODTRAN4: Radiative transfer modeling for remote sensing," Proc. SPIE 4049 (2000).Q4
[CrossRef]

1999

Z.-L. Li, F. Becker, M. Stoll, and Z. Wan, "Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images," Remote Sens. Environ. 69, 197-214 (1999).Q2
[CrossRef]

1997

W. C. Snyder, Z. Wan, Y. Zhang and Y.-Z. Feng, "Thermal Infrared (3-14 μm) Bidirectional ReflectanceMeasurements of Sands and Soils," Remote Sens. Environ. 60, 101-109 (1997).Q3
[CrossRef]

Appl. Opt.

J. Cuenca and J. A. Sobrino, "Experimental measurements for studying angular and spectral variation of thermal infrared emissivity," Appl. Opt. 43, 4568-4602 (2004).
[CrossRef]

IEEE Transaction on Geoscience and Remote Sensing

P. M. Ingram and A. H. Muse, "Sensitivity of Iterative Spectrally Smooth Temperature / Emissivity Separation to Algorithmic Assumptions and Measurement Noise," IEEE Transaction on Geoscience and Remote Sensing 39, 2158-2167 (2001).Q1
[CrossRef]

Int. J. Remote Sens.

P. Dash, F.-M. G¨ottsche, F.-S. Olesen and H. Fischer, "Land surface temperature and emissivity estimation from passive sensor data: theory and practice current trends," Int. J. Remote Sens. 23,2563-2594 (2002).
[CrossRef]

Proc. SPIE

C. Salvaggio and C. J. Miller, "Comparison of field and laboratory collected midwave and longwave infrared emissivity spectra / data reduction techniques," Proc. SPIE,  4381, 549-558 (2001).
[CrossRef]

G. Anderson, A. Berk, P. Acharya, M. Matthew, L. Bernstein, J. Chetwynd, H. Dothe, S. Adler-Golden, A. Ratkowski, G. Felde, J. Gardner, M. Hoke, S. Richtsmeier, B. Pukall, J. Mello and L. Leong, "MODTRAN4: Radiative transfer modeling for remote sensing," Proc. SPIE 4049 (2000).Q4
[CrossRef]

Remote Sens. Environ.

Z.-L. Li, F. Becker, M. Stoll, and Z. Wan, "Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images," Remote Sens. Environ. 69, 197-214 (1999).Q2
[CrossRef]

W. C. Snyder, Z. Wan, Y. Zhang and Y.-Z. Feng, "Thermal Infrared (3-14 μm) Bidirectional ReflectanceMeasurements of Sands and Soils," Remote Sens. Environ. 60, 101-109 (1997).Q3
[CrossRef]

Other

N. Bower, Measurement of Land Surface Emissivity and Temperature in the Thermal Infrared using a Ground- Based Interferometer, PhD Thesis, (Curtin University of Technology, Perth, Australia, 2001).
[PubMed]

C. C. Borel, "Surface emissivity and temperature retrieval for a hyperspectral sensor," in Proceedings of IEEE Conference on Geoscience and Remote Sensing, (IEEE, 1998) pp. 504-509.

K. Kanani, Utilisation de la tr`es haute r’esolution spectrale pour la mesure en environnement ext’erieur de l’´emissivit’e de surface dans la bande infrarouge 313 μm. M’ethodes et validation exp’erimentale, Th`ese de Doctorat, (Universit’e Louis Pasteur, Strasbourg N4946, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1.
Fig. 1.

Field campaign: the spectroradiometer is located in an insulated chamber. The samples to measure slide on rails into the radiometer’s field of view

Fig. 2.
Fig. 2.

Laboratory measurement of the Infragold brdf at 3.39µm, for θv =0°

Fig. 3.
Fig. 3.

Relative difference, in LWIR band, between the total irradiance I assessed from the radiance measurement on the reflective panel and the irradiance I [SIMU] simulated with MODTRAN.

Fig. 4.
Fig. 4.

Spectral differences, in the MWIR band, between the total irradiance I assessed from the radiance measurement on the reflective panel (assumed either Lambertian or directionnal) and I [SIMU] simulated with MODTRAN. The “Rfl lamber” curve correponds to I assessed by assuming the reflective panel Lambertian, whereas the “Rfl dir” curve corresponds to I assessed by assuming the reflective panel directionnal.

Fig. 5.
Fig. 5.

Results of emissivity retrieved by SpSm in comparison to laboratory measurements, for each sample and for three spectral domains: the deviation bars are centred on Δ M/L (Eq. 14) and have a half-length equal to σm (Eq. 15).

Fig. 6.
Fig. 6.

SpSm retrieved emissivity example of stone#1 sample. Comparison with laboratory measurement

Fig. 7.
Fig. 7.

SpSm retrieved emissivity example of negev sample. Comparison with laboratory measurement

Fig. 8.
Fig. 8.

SmaC discontinuity measurement

Fig. 9.
Fig. 9.

SmaC retrieved emissivity example of stone#1 and negev samples in MWIR band. Comparison with laboratory measurement

Fig. 10.
Fig. 10.

Results of emissivity retrieved by SmaC and SpSm in DIIa , in comparison to laboratory measurements (same legend as for figure 5)

Fig. 11.
Fig. 11.

Results of emissivity retrieved by SmaC and SpSm in DIIb , in comparison to laboratory measurements (same legend as for figure 5)

Fig. 12.
Fig. 12.

Emissivities and directional factors of slate retrieved by SmaC.

Fig. 13.
Fig. 13.

Emissivities and directional factors of wood retrieved by SmaC.

Fig. 14.
Fig. 14.

Emissivities and directional factors of BB retrieved by SmaC.

Fig. 15.
Fig. 15.

Emissivities and directional factors of sand#1 retrieved by SmaC.

Fig. 16.
Fig. 16.

Emissivities and directional factors of negev retrieved by SmaC.

Fig. 17.
Fig. 17.

Emissivities and directional factors of stone#1 retrieved by SmaC.

Fig. 18.
Fig. 18.

Emissivities and directional factors of stone#2 retrieved by SmaC.

Fig. 19.
Fig. 19.

Emissivities and directional factors of stone#3 retrieved by SmaC.

Fig. 20.
Fig. 20.

Emissivities and directional factors of pstyr retrieved by SmaC.

Fig. 21.
Fig. 21.

Emissivities and directional factors of sand#2 retrieved by SmaC.

Fig. 22.
Fig. 22.

Emissivities and directional factors of SiC retrieved by SmaC.

Tables (2)

Tables Icon

Table 1. Main characteristics and composition information of the surfaces mesured during the field campaign.

Tables Icon

Table 2. Spectral domains considered for the performance assessment

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

R ( ν ) = ε ( ν ) B ( ν , T ) + ( 1 ε ( ν ) ) I ( ν ) π
R ( θ v , φ v , ν ) = ε ( θ v , φ v , ν ) B ( ν , T )
+ 2 π brd f ( θ i , φ i , θ v , φ v , ν ) R env ( θ i , φ i , ν ) cos θ i d Ω i
+ brd f ( θ s , φ s , θ v , φ v , ν ) I dir ( θ s , φ s , ν )
R gld ( θ v , φ v , ν ) = ( 1 ρ gld ( θ v , ϕ v , ν ) ) B ( ν , T gld )
+ 2 π brd f gld ( θ i , φ i , θ v , φ v , ν ) R env ( θ i , φ i , ν ) cos θ i d Ω i
+ brd f gld ( θ s , φ s , θ v , φ v , ν ) I dir ( θ s , φ s , ν )
ρ gld ( θ v , φ v ) = 2 π brd f gld ( θ i , φ i , θ v , φ v , ν ) cos θ i d Ω i
R gld = ( 1 ρ gld ) B ( ν , T gld ) + 2 π brd f gld ( θ i , φ i ) R env ( θ i , φ i ) cos θ i d Ω i
R gld = ( 1 ρ gld ) B ( T gld ) + ρ gld I env π
with I env = 2 π R env cos θ i d Ω i
I = π R gld ( 1 ρ gld ) B ( T gld ) ρ gld
R gld = ( 1 ρ gld ) B ( T gld ) + ρ gld I env π + brd f gld ( θ s , φ s ) I dir
b r ˜ d f gld ( θ s , φ s ) =
R gld ( 1 ρ gld ) B ( T gld ) ρ gld I env [ SIMU ] π I dir [ SIMU ] 2735 2880
I dir = R gld ( 1 ρ gld ) B ( T gld ) + ρ gld I env π b r ˜ d f gld ( θ s , φ s )
ε ( T ) = L I π B ( T ) I π
Sm ( T ) = ε ( T ) ν d ν
Δ M L = 1 N D i = 1 N D [ M [ i ] ε L [ i ] ]
with M [ i ] = 1 N m i = 1 N m ε j [ i ]
σ m = 1 N m N D 1 i = 1 N D j = 1 N m ( ε j [ i ] M [ i ] ) 2
R ( θ v , φ v , ν ) = ε ( θ v , φ v , ν ) B ( ν , T ) + ( 1 ε ( θ v , φ v , ν ) ) I env ( ν ) π
+ brd f ( θ s , φ s , θ v , φ v , ν ) I dir ( θ s , φ s , ν )
brd f ( θ v , φ v , θ i , φ i , ν ) = 1 π × f ˜ ( θ i , φ i , θ v , φ v ) × ρ ( θ v , φ v , ν )
R ( θ v , φ v , ν ) = ε ( θ v , φ v , ν ) B ( ν , T )
+ 1 π ( 1 ε ( θ v , φ v , ν ) ) [ I env ( ν ) + f ˜ ( θ s , φ s , θ v , φ v ) I dir ( θ s , φ s , ν ) ]
ε ( θ v , φ v , ν ) = π R ( θ v , φ v , ν ) I ˜ ( θ s , φ s ) π B ( ν , T ) I ˜ ( θ s , φ s )
with I ˜ ( θ s , φ s , ν ) = I env ( ν ) + f ˜ ( θ s , φ s , θ v , φ v ) I dir ( θ s , φ s , ν )
Δ = lim ν ν c ε ( ν ) lim ν ν c + ε ( ν )

Metrics