Abstract

The evolution of transmission spectra of Bragg gratings written in an N-doped silica-core fiber in the course of H2 loading at a pressure of 6 MPa is investigated. It is shown, that penetration of hydrogen molecules in the region of fiber core with written gratings causes irreversible spectrum changes, which do not disappear after subsequent H2 outcome from the fiber. Bragg gratings’ spectra monitoring in the process of H2 loading is viewed from the angle of photosensitivity mechanisms responsible for formation in N-doped silica-core fibers photoinduced Bragg gratings, capable to operate at very high temperatures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. O. V. Butov, E. M. Dianov, and K. M. Golant, "Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures," Meas. Sci. Technol. 17, 975-979 (2006).
    [CrossRef]
  2. B. Leconte, University of Lille, France, P.H.D. thesis №2379, available on request (1998).
  3. P. Karlitschek, G. Hillrichs, and K. -F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core," Opt. Commun. 155, 386-397 (1998).
    [CrossRef]
  4. A. V. Lanin, O. V. Butov, and K. M. Golant, "Response of in-fiber Bragg gratings to hydrogen loading and subsequent heat treatment in H2 ambience," Appl. Opt. 45, 5800-5807 (2006).
    [CrossRef] [PubMed]
  5. C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).
  6. A. V. Lanin, K. M. Golant, and I. V. Nikolin, "Interaction of molecular hydrogen with the doped silica core of an optical fiber at elevated temperatures," Tech. Phys. 49, 1600-1604 (2004).
    [CrossRef]
  7. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
    [CrossRef]
  8. A. Hidayat, Q. Wang, P. Niay, M. Douay, B. Poumellec, F. Kherbouche, and I. Riant, "Temperature induced reversible changes in the spectral characteristics of fiber Bragg gratings," Appl. Opt. 40, 2632-2642 (2001).
    [CrossRef]
  9. E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
    [CrossRef]
  10. O. V. Butov and K. M. Golant, "Core-cladding structure transformation in silica optical fibers caused by UV-induced Bragg grating inscription," in Proceedings of XX International Congress on Glass, Y. Toshinobu, ed. (The Ceramic Society of Japan, Tokyo, Japan, 2004) O-14-047.
  11. V. A. Radtsig, "Nitrogen-containing paramagnetic centers in vitreous silica," Kinetics and Catalysis 46, 578-596 (2005).
    [CrossRef]
  12. V. V. Tugushev and K. M. Golant, "Excited oxygen-deficient center in silicon dioxide as a structurally non-rigid, mixed-valence complex," J. Non-Cryst.Solid. 241, 166-173 (1998).
    [CrossRef]
  13. K. M. Golant and V. V. Tugushev, "A mechanism for photoinduced electronic reconstruction of the oxygen vacancy in doped quartz glass and its characteristics," Phys. Solid. State 41, 928 (1999).
    [CrossRef]
  14. J. Canning and M. Aslund, "Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings," Opt. Lett. 24, 463-465 (1999).
    [CrossRef]
  15. L. Dong and W.F. Liu, "Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber," Appl. Opt. 36, 8222-8226 (1997).
    [CrossRef]

2006 (2)

O. V. Butov, E. M. Dianov, and K. M. Golant, "Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures," Meas. Sci. Technol. 17, 975-979 (2006).
[CrossRef]

A. V. Lanin, O. V. Butov, and K. M. Golant, "Response of in-fiber Bragg gratings to hydrogen loading and subsequent heat treatment in H2 ambience," Appl. Opt. 45, 5800-5807 (2006).
[CrossRef] [PubMed]

2005 (1)

V. A. Radtsig, "Nitrogen-containing paramagnetic centers in vitreous silica," Kinetics and Catalysis 46, 578-596 (2005).
[CrossRef]

2004 (1)

A. V. Lanin, K. M. Golant, and I. V. Nikolin, "Interaction of molecular hydrogen with the doped silica core of an optical fiber at elevated temperatures," Tech. Phys. 49, 1600-1604 (2004).
[CrossRef]

2001 (1)

1999 (2)

K. M. Golant and V. V. Tugushev, "A mechanism for photoinduced electronic reconstruction of the oxygen vacancy in doped quartz glass and its characteristics," Phys. Solid. State 41, 928 (1999).
[CrossRef]

J. Canning and M. Aslund, "Correlation of ultraviolet-induced stress changes and negative index growth in type IIa germanosilicate waveguide gratings," Opt. Lett. 24, 463-465 (1999).
[CrossRef]

1998 (2)

V. V. Tugushev and K. M. Golant, "Excited oxygen-deficient center in silicon dioxide as a structurally non-rigid, mixed-valence complex," J. Non-Cryst.Solid. 241, 166-173 (1998).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K. -F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core," Opt. Commun. 155, 386-397 (1998).
[CrossRef]

1997 (2)

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).

L. Dong and W.F. Liu, "Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber," Appl. Opt. 36, 8222-8226 (1997).
[CrossRef]

1995 (1)

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

C. L. Liou, L. A. Wang, M. C. Shih, and T. J. Chuang, "Characteristics of hydrogenated fiber Bragg gratings," Appl. Phys. A 64, 191-197 (1997).

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

J. Lightwave Technol. (1)

E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, and A. L. Tomashuk, "Low-hydrogen silicon oxynitride optical fibers prepared by SPCVD," J. Lightwave Technol. 13, 1471-1474 (1995).
[CrossRef]

Kinetics and Catalysis (1)

V. A. Radtsig, "Nitrogen-containing paramagnetic centers in vitreous silica," Kinetics and Catalysis 46, 578-596 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

O. V. Butov, E. M. Dianov, and K. M. Golant, "Nitrogen-doped silica-core fibres for Bragg grating sensors operating at elevated temperatures," Meas. Sci. Technol. 17, 975-979 (2006).
[CrossRef]

Opt. Commun. (1)

P. Karlitschek, G. Hillrichs, and K. -F. Klein, "Influence of hydrogen on the colour center formation in optical fibers induced by pulsed UV-laser radiation. Part 2: All-silica fibers with low-OH undoped core," Opt. Commun. 155, 386-397 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Solid. State (1)

K. M. Golant and V. V. Tugushev, "A mechanism for photoinduced electronic reconstruction of the oxygen vacancy in doped quartz glass and its characteristics," Phys. Solid. State 41, 928 (1999).
[CrossRef]

Solid. (1)

V. V. Tugushev and K. M. Golant, "Excited oxygen-deficient center in silicon dioxide as a structurally non-rigid, mixed-valence complex," J. Non-Cryst.Solid. 241, 166-173 (1998).
[CrossRef]

Tech. Phys. (1)

A. V. Lanin, K. M. Golant, and I. V. Nikolin, "Interaction of molecular hydrogen with the doped silica core of an optical fiber at elevated temperatures," Tech. Phys. 49, 1600-1604 (2004).
[CrossRef]

Other (2)

B. Leconte, University of Lille, France, P.H.D. thesis №2379, available on request (1998).

O. V. Butov and K. M. Golant, "Core-cladding structure transformation in silica optical fibers caused by UV-induced Bragg grating inscription," in Proceedings of XX International Congress on Glass, Y. Toshinobu, ed. (The Ceramic Society of Japan, Tokyo, Japan, 2004) O-14-047.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig.1.
Fig.1.

Bragg wavelengths change during hydrogen entrance and extraction at room temperature.

Fig. 2.
Fig. 2.

NICC change during hydrogen entrance and extraction at room temperature

Fig. 3.
Fig. 3.

Dynamics of Bragg gratins writing in the N-doped fiber with and without H2. In the inset initial stage of inscription is shown.

Tables (1)

Tables Icon

Table 1. Parameters of in-fiber Bragg gratings used in experiments.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 · n eff · Λ ,
NICC = tanh 1 ( R ) tanh 1 ( R 0 ) ,

Metrics