Abstract

A portable fiber SERS probe has been developed based on Ag nanorod array fabricated by oblique angle deposition. The incoming laser beam was designed to focus onto the Raman substrate at 45° incident angle in order to maximize surface enhanced Raman scattering signal. With a fiber Raman system, a detection sensitivity of 10-17 moles for trans-1, 2-bis(4-pyridyl)ethane molecules has been demonstrated. This Raman probe can also be used for in situ measurement for samples in aqueous solution. Such a fiber probe has great potential as a portable and remote sensor for on-site biological or chemical detection.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Vo-Dinh, "Surface-enhanced Raman spectroscopy using metallic nanostructures," Trends Analyt. Chem. 17, 557-582 (1998).
    [CrossRef]
  2. C. R. Yonzon, D. A. Stuart, X. Zhang, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, "Towards advanced chemical and biological nanosensors-An overview," Talanta 67, 438-448 (2005).
    [CrossRef]
  3. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett. 26, 163-166 (1974).
    [CrossRef]
  4. A. A. Stacy and R. P. Van Duyne, "Surface enhanced raman and resonance raman spectroscopy in a non-aqueous electrochemical environment: tris (2,2′-bipyridine)ruthenium(II) adsorbed on silver from acetonitrile," Chem. Phys. Lett. 102, 365-370 (1983).
    [CrossRef]
  5. G. J. Kovacs, R. O. Loutfy, P. S. Vincett, C. Jennings, and R. Aroca, "Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: evidence for the electromagnetic mechanism," Langmuir 2, 689-694 (1986).
    [CrossRef]
  6. K. T. Carron, X. Gi, and M. L. Lewis, "A surface enhanced Raman spectroscopy study of the corrosion-inhibiting properties of benzimidazole and benzotriazole on copper," Langmuir 7, 2-4 (1991).
    [CrossRef]
  7. L. M. Sudnik, K. L. Norrod, and K. L. Rowlen, "SERS-active Ag films from photoreduction of Ag+ on TiO2," Appl. Spectrosc. 50, 422-424 (1996).
    [CrossRef]
  8. S. M. Nie, and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  9. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
    [CrossRef]
  10. G. Suer, U. Nickel, and S. Schneider, "Preparation of SERS-active silver film electrodes via electrocrystallization of silver," J. Raman Spectrosc. 31, 359-363 (2000).
    [CrossRef]
  11. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. D. Yang, "Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy," Nano Lett. 3, 1229-1233 (2003).
    [CrossRef]
  12. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.- P. Zhao, "Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates," Appl. Phys. Lett. 87, 031908.1-3 (2005).
    [CrossRef]
  13. Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, "Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays," J. Phys. Chem. B 110, 3153-3157 (2006).
    [CrossRef] [PubMed]
  14. Y. J. Liu, J. G. Fan, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, "Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate," Appl. Phys. Lett. 89, 173134.1-3 (2006).
  15. S. Shanmukh, L. Jones, J. Driskell, Y.-P. Zhao, R. Dluhy, and R. A. Tripp, "Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate," Nano Lett. 6, 2630-2636 (2006).
    [CrossRef] [PubMed]
  16. C. E. Taylor, S. D. Garvey, and J. E. Pemberton, "Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy," Anal. Chem. 68, 2401-2408 (1996).
    [CrossRef]
  17. Y. W. Alsmeyer and R. L McCreery, "Surface-enhanced Raman spectroscopy of carbon electrode surfaces following silver electrodeposition," Anal. Chem. 63, 12891295 (1991).
    [CrossRef]
  18. R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, "Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass," J. Chem. Phys. 99, 2101-2115 (1993).
    [CrossRef]
  19. W. -H. Yang, J. Hulteen, G. C. Schatz, and R. P. Van Duyne, "A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: experiment and theory," J. Chem. Phys. 104, 4313-4323 (1996).
    [CrossRef]
  20. K. L. Norrod, L. M. Sudnik, D. Rousell, and K. L. Rowlen, "Quantitative comparison of five SERS substrates: sensitivity and limit of detection," Appl. Spectrosc. 51, 994-1001 (1997).
    [CrossRef]
  21. P. N. Sanda, J. M. Warlaumont, J. E. Demuth, J. C. Tsang, K. Christmann, and J. A. Bradley, "Surface-enhanced Raman scattering from pyridine on Ag(111)," Phys. Rev. Lett. 45, 1519-1523 (1980).
    [CrossRef]
  22. U. K. Sarkar, A. J. Pal, S. Chakraborti, and T. N. Misra, "Classical and chemical effects of SERS from 2,2’:5,2" terthiophene adsorbed on Ag-sols," Chem. Phys. Lett. 190, 59-63 (1992).
    [CrossRef]
  23. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-825 (1985).
    [CrossRef]
  24. E. J. Zeman, K. T. Carron, G. C. Schatz, and R. P. Van Duyne, "A surface enhanced resonance Raman study of cobalt phthalocyanine on rough Ag films: theory and experiment," J. Chem. Phys. 87, 4189-4200 (1987).
    [CrossRef]
  25. R. J. Dijkstra, A. Gerssen, E. V. Efremov, F. Ariese, U. A. T. Brinkman, and C. Gooijer, "Substrates for the at-line coupling of capillary electrophoresis and surface-Raman spectroscopy," Anal. Chim. Acta. 508, 127-134 (2004).
    [CrossRef]
  26. N. Félidj, S. Lau Truong, J. Aubard, G. Lévi, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, "Gold particle interaction in regular arrays probed by surface enhanced Raman scattering," J. Chem. Phys. 120, 7141-7146 (2004).
    [CrossRef] [PubMed]
  27. S. E. Roark, D. J. Semin, A. Lo, R. Skodje, and K. L. Rowlen, "Solvent-induced morphology changes in thin silver films," Anal. Chim. Acta. 307, 341-353 (1995).
    [CrossRef]
  28. X. Li, W. Xu, H. Jia, X. Wang, B. Zhao, B. Li, and Y. Ozaki, "Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visble, surface-enhanced Raman scattering spectroscopy and atomic force microscopy," Thin Solid films 474, 181-185 (2005).
    [CrossRef]

2006 (2)

Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, "Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays," J. Phys. Chem. B 110, 3153-3157 (2006).
[CrossRef] [PubMed]

S. Shanmukh, L. Jones, J. Driskell, Y.-P. Zhao, R. Dluhy, and R. A. Tripp, "Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate," Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

2005 (2)

C. R. Yonzon, D. A. Stuart, X. Zhang, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, "Towards advanced chemical and biological nanosensors-An overview," Talanta 67, 438-448 (2005).
[CrossRef]

X. Li, W. Xu, H. Jia, X. Wang, B. Zhao, B. Li, and Y. Ozaki, "Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visble, surface-enhanced Raman scattering spectroscopy and atomic force microscopy," Thin Solid films 474, 181-185 (2005).
[CrossRef]

2004 (2)

R. J. Dijkstra, A. Gerssen, E. V. Efremov, F. Ariese, U. A. T. Brinkman, and C. Gooijer, "Substrates for the at-line coupling of capillary electrophoresis and surface-Raman spectroscopy," Anal. Chim. Acta. 508, 127-134 (2004).
[CrossRef]

N. Félidj, S. Lau Truong, J. Aubard, G. Lévi, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, "Gold particle interaction in regular arrays probed by surface enhanced Raman scattering," J. Chem. Phys. 120, 7141-7146 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. D. Yang, "Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy," Nano Lett. 3, 1229-1233 (2003).
[CrossRef]

2000 (2)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

G. Suer, U. Nickel, and S. Schneider, "Preparation of SERS-active silver film electrodes via electrocrystallization of silver," J. Raman Spectrosc. 31, 359-363 (2000).
[CrossRef]

1998 (1)

T. Vo-Dinh, "Surface-enhanced Raman spectroscopy using metallic nanostructures," Trends Analyt. Chem. 17, 557-582 (1998).
[CrossRef]

1997 (2)

S. M. Nie, and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

K. L. Norrod, L. M. Sudnik, D. Rousell, and K. L. Rowlen, "Quantitative comparison of five SERS substrates: sensitivity and limit of detection," Appl. Spectrosc. 51, 994-1001 (1997).
[CrossRef]

1996 (3)

W. -H. Yang, J. Hulteen, G. C. Schatz, and R. P. Van Duyne, "A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: experiment and theory," J. Chem. Phys. 104, 4313-4323 (1996).
[CrossRef]

L. M. Sudnik, K. L. Norrod, and K. L. Rowlen, "SERS-active Ag films from photoreduction of Ag+ on TiO2," Appl. Spectrosc. 50, 422-424 (1996).
[CrossRef]

C. E. Taylor, S. D. Garvey, and J. E. Pemberton, "Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy," Anal. Chem. 68, 2401-2408 (1996).
[CrossRef]

1995 (1)

S. E. Roark, D. J. Semin, A. Lo, R. Skodje, and K. L. Rowlen, "Solvent-induced morphology changes in thin silver films," Anal. Chim. Acta. 307, 341-353 (1995).
[CrossRef]

1993 (1)

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, "Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass," J. Chem. Phys. 99, 2101-2115 (1993).
[CrossRef]

1992 (1)

U. K. Sarkar, A. J. Pal, S. Chakraborti, and T. N. Misra, "Classical and chemical effects of SERS from 2,2’:5,2" terthiophene adsorbed on Ag-sols," Chem. Phys. Lett. 190, 59-63 (1992).
[CrossRef]

1991 (2)

Y. W. Alsmeyer and R. L McCreery, "Surface-enhanced Raman spectroscopy of carbon electrode surfaces following silver electrodeposition," Anal. Chem. 63, 12891295 (1991).
[CrossRef]

K. T. Carron, X. Gi, and M. L. Lewis, "A surface enhanced Raman spectroscopy study of the corrosion-inhibiting properties of benzimidazole and benzotriazole on copper," Langmuir 7, 2-4 (1991).
[CrossRef]

1987 (1)

E. J. Zeman, K. T. Carron, G. C. Schatz, and R. P. Van Duyne, "A surface enhanced resonance Raman study of cobalt phthalocyanine on rough Ag films: theory and experiment," J. Chem. Phys. 87, 4189-4200 (1987).
[CrossRef]

1986 (1)

G. J. Kovacs, R. O. Loutfy, P. S. Vincett, C. Jennings, and R. Aroca, "Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: evidence for the electromagnetic mechanism," Langmuir 2, 689-694 (1986).
[CrossRef]

1985 (1)

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-825 (1985).
[CrossRef]

1983 (1)

A. A. Stacy and R. P. Van Duyne, "Surface enhanced raman and resonance raman spectroscopy in a non-aqueous electrochemical environment: tris (2,2′-bipyridine)ruthenium(II) adsorbed on silver from acetonitrile," Chem. Phys. Lett. 102, 365-370 (1983).
[CrossRef]

1980 (1)

P. N. Sanda, J. M. Warlaumont, J. E. Demuth, J. C. Tsang, K. Christmann, and J. A. Bradley, "Surface-enhanced Raman scattering from pyridine on Ag(111)," Phys. Rev. Lett. 45, 1519-1523 (1980).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett. 26, 163-166 (1974).
[CrossRef]

Anal. Chem. (2)

C. E. Taylor, S. D. Garvey, and J. E. Pemberton, "Carbon contamination at silver surfaces: surface preparation procedures evaluated by Raman spectroscopy and X-ray photoelectron spectroscopy," Anal. Chem. 68, 2401-2408 (1996).
[CrossRef]

Y. W. Alsmeyer and R. L McCreery, "Surface-enhanced Raman spectroscopy of carbon electrode surfaces following silver electrodeposition," Anal. Chem. 63, 12891295 (1991).
[CrossRef]

Anal. Chim. Acta. (2)

R. J. Dijkstra, A. Gerssen, E. V. Efremov, F. Ariese, U. A. T. Brinkman, and C. Gooijer, "Substrates for the at-line coupling of capillary electrophoresis and surface-Raman spectroscopy," Anal. Chim. Acta. 508, 127-134 (2004).
[CrossRef]

S. E. Roark, D. J. Semin, A. Lo, R. Skodje, and K. L. Rowlen, "Solvent-induced morphology changes in thin silver films," Anal. Chim. Acta. 307, 341-353 (1995).
[CrossRef]

Appl. Spectrosc. (2)

Chem. Phys. Lett. (3)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett. 26, 163-166 (1974).
[CrossRef]

A. A. Stacy and R. P. Van Duyne, "Surface enhanced raman and resonance raman spectroscopy in a non-aqueous electrochemical environment: tris (2,2′-bipyridine)ruthenium(II) adsorbed on silver from acetonitrile," Chem. Phys. Lett. 102, 365-370 (1983).
[CrossRef]

U. K. Sarkar, A. J. Pal, S. Chakraborti, and T. N. Misra, "Classical and chemical effects of SERS from 2,2’:5,2" terthiophene adsorbed on Ag-sols," Chem. Phys. Lett. 190, 59-63 (1992).
[CrossRef]

J. Chem. Phys. (4)

E. J. Zeman, K. T. Carron, G. C. Schatz, and R. P. Van Duyne, "A surface enhanced resonance Raman study of cobalt phthalocyanine on rough Ag films: theory and experiment," J. Chem. Phys. 87, 4189-4200 (1987).
[CrossRef]

N. Félidj, S. Lau Truong, J. Aubard, G. Lévi, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, "Gold particle interaction in regular arrays probed by surface enhanced Raman scattering," J. Chem. Phys. 120, 7141-7146 (2004).
[CrossRef] [PubMed]

R. P. Van Duyne, J. C. Hulteen, and D. A. Treichel, "Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass," J. Chem. Phys. 99, 2101-2115 (1993).
[CrossRef]

W. -H. Yang, J. Hulteen, G. C. Schatz, and R. P. Van Duyne, "A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: experiment and theory," J. Chem. Phys. 104, 4313-4323 (1996).
[CrossRef]

J. Phys. Chem. B (2)

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles," J. Phys. Chem. B 104, 10549-10556 (2000).
[CrossRef]

Y.-P. Zhao, S. B. Chaney, S. Shanmukh, and R. A. Dluhy, "Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays," J. Phys. Chem. B 110, 3153-3157 (2006).
[CrossRef] [PubMed]

J. Raman Spectrosc. (1)

G. Suer, U. Nickel, and S. Schneider, "Preparation of SERS-active silver film electrodes via electrocrystallization of silver," J. Raman Spectrosc. 31, 359-363 (2000).
[CrossRef]

Langmuir (2)

G. J. Kovacs, R. O. Loutfy, P. S. Vincett, C. Jennings, and R. Aroca, "Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: evidence for the electromagnetic mechanism," Langmuir 2, 689-694 (1986).
[CrossRef]

K. T. Carron, X. Gi, and M. L. Lewis, "A surface enhanced Raman spectroscopy study of the corrosion-inhibiting properties of benzimidazole and benzotriazole on copper," Langmuir 7, 2-4 (1991).
[CrossRef]

Nano Lett. (2)

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. D. Yang, "Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy," Nano Lett. 3, 1229-1233 (2003).
[CrossRef]

S. Shanmukh, L. Jones, J. Driskell, Y.-P. Zhao, R. Dluhy, and R. A. Tripp, "Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate," Nano Lett. 6, 2630-2636 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

P. N. Sanda, J. M. Warlaumont, J. E. Demuth, J. C. Tsang, K. Christmann, and J. A. Bradley, "Surface-enhanced Raman scattering from pyridine on Ag(111)," Phys. Rev. Lett. 45, 1519-1523 (1980).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-825 (1985).
[CrossRef]

Science (1)

S. M. Nie, and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Talanta (1)

C. R. Yonzon, D. A. Stuart, X. Zhang, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, "Towards advanced chemical and biological nanosensors-An overview," Talanta 67, 438-448 (2005).
[CrossRef]

Thin Solid films (1)

X. Li, W. Xu, H. Jia, X. Wang, B. Zhao, B. Li, and Y. Ozaki, "Water-induced morphology changes in an ultrathin silver film studied by ultraviolet-visble, surface-enhanced Raman scattering spectroscopy and atomic force microscopy," Thin Solid films 474, 181-185 (2005).
[CrossRef]

Trends Analyt. Chem. (1)

T. Vo-Dinh, "Surface-enhanced Raman spectroscopy using metallic nanostructures," Trends Analyt. Chem. 17, 557-582 (1998).
[CrossRef]

Other (2)

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.- P. Zhao, "Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates," Appl. Phys. Lett. 87, 031908.1-3 (2005).
[CrossRef]

Y. J. Liu, J. G. Fan, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, "Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate," Appl. Phys. Lett. 89, 173134.1-3 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A typical SEM image of Ag nanorod array. The Ag nanorods have an average length of 868±95 nm and an average diameter of 99 ± 29 nm. The scale bar represents 2 µm.

Fig. 2.
Fig. 2.

(a). The schematics of the fiber Raman setup for SERS measurement. (b) Photograph of SERS probe. (c) The schematic of the tilting Ag nanorods parallel to the incident plane at 45° incident angle relative to surface normal.

Fig. 3.
Fig. 3.

Typical SERS spectrum of bare substrate. The spectrum was collected at an excitation wavelength of 785 nm, incident laser power of 52 mW on the substrate and collection time of 10 s.

Fig. 4.
Fig. 4.

SERS spectra of BPE deposited on Ag nanorod substrate. The amount of adsorbed BPE on substrate was calculated to be from 10-17 to 10-16 moles. The spectra were collected at an excitation wavelength of 785 nm, incident laser power of 52 mW on the samples and collection time of 10 s. Spectra were offset for clarity.

Fig. 5.
Fig. 5.

Log- log plot of the integrated band areas at 1200 cm-1 in the SERS spectra of BPE against the number of moles of BPE deposited onto the Ag nanorod substrate surface. Spectra were collected from 5 spots for each application of BPE at an excitation wavelength of 785 nm, incident laser power of 52 mW on the samples and collection time of 10 s. The average intensities were plotted and the error bars represent the standard deviation values.

Fig. 6.
Fig. 6.

Plot of the integrated band areas at 1200 cm-1 in the SERS spectra of BPE as a function of time. The concentrations of BPE were from 10-6 to 10-5 M. Distilled water was used as solvent. The BPE solution was sucked out of the liquid cell before the next higher concentration was added. The elapsed time for each concentration was 80 min. The spectra were collected at an excitation wavelength of 785 nm, incident laser power of 96 mW on the samples and collection time of 10 s.

Metrics