Abstract

The total process cycle time for large ULE® and Zerodur® optics can be improved using a precise and rapid grinding process, with low levels of surface waviness and subsurface damage. In this paper, the amounts of defects beneath ULE® and Zerodur® surfaces ground using a selected grinding mode were compared. The grinding response was characterised by measuring: surface roughness, surface profile and subsurface damage. The observed subsurface damage can be separated into two distinct depth zones, which are: ‘process’ and ‘machine dynamics’ related.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Gilmozzi, "Science and technology drivers for future giant telescopes," Proc. SPIE 5489, 1-10 (2004).
    [CrossRef]
  2. P. Shore and R. May-Miller, "Production challenge of the optical segments for extra large telescopes," Proc. Int. Progress on Adv. Optics and Sensors, 25-30 (2003).
  3. P. Shore, P. Morantz, X. Luo, X. Tonnellier, R. Read, and R. May-Miller, "Design philosophy of the ultra precision big optix "BoX" machine," Proc. Landamap, 200-209 (2005).
  4. X. Tonnellier, P. Shore, X. Luo, A. Baldwin, P. Morantz, T. Jin, and D. Stephenson, "Wheel wear investigations when precision grinding of optical materials using the BoX® grinding mode," Proc. 5th High Speed Machining, 177-186 (2006).
  5. X. Tonnellier, P. Shore, X. Luo, P. Morantz, and A. Baldwin, "High performance grinding studies on optical materials suitable for large optics," Proc. 2nd CIRP High Performance Cutting (2006).
  6. I. Inasaki, "Grinding of Hard and Brittle Materials," CIRP Annals 36/2, 463-471 (1987).
    [CrossRef]
  7. T. G. Bifano, T. A. Dow, and R. O. Scattergood, "Ductile regime grinding - A new technology for machining brittle materials," J. Eng. Ind. 113/2, 184-189 (1991).
    [CrossRef]
  8. P. Shore, P. McKeown, S. Impey, and D. Stephenson, "Surface and near surface conditions of "ductile" mode ground Zerodur," Proc. 8th Int. Prec. Eng. Seminar, 365-368 (1995).
  9. B. Lawn, Fracture of Brittle Solids (Cambridge University Press 1975).
  10. T. M. A. Maksoud, A. A. Mokbel, and J. E. Morgan, "Evaluation of surface and sub-surface cracks of ground ceramic," J. Mater. Process. Technol. 88, 222-243 (1999).
    [CrossRef]
  11. J. C. Lambropoulos, "From abrasive size to subsurface damage in grinding," Optical Fab. & Testing, OSA Technical Digest, 17-18 (2000).
  12. P. P. Hed, and D. F. Edwards, "Optical glass fabrication technology 2: Relationship between surface roughness and subsurface damage," Appl. Opt. 26/21, 4677-4680 (1987).
    [CrossRef]
  13. J. Franse, "Aspects of Precision Grinding," PhD thesis, Technische Universiteit Eindhoven (1991).
  14. P. Shore, "Machining of optical surfaces in brittle materials using an ultra-precision machine tool," PhD thesis, Cranfield University (1995).
  15. X. Tonnellier, P. Morantz, P. Shore, A. Baldwin, R. Evans, and D. D. Walker, "Subsurface damage caused during rapid grinding of Zerodur," Proc. ISAAT07, (to be published).
  16. H. K. Tonshoff, E. Brinksmeier, and F. Hetz, "Detection of microcracks," CIRP Annals 36/2, 545-552 (1987).
  17. K. E. Puttick, C. Jeynes, L. Whitmore, M. R. Rudman, M. Yamasaka, P. Shore, and A. E. Gee, "Surface damage in nanoground silicon," Proc. IMECH, 49-51 (1992).
  18. M. J. Ball, N. A. Murphy, and P. Shore, "Electrolytically assisted "ductile" mode diamond grinding of BK7 and SF10 optical glasses," Proc. SPIE 1573, 30-38 (1991).
    [CrossRef]
  19. X. Sun, D. J. Stephenson, O. Ohnishi, and A. Baldwin, "An investigation into parallel and cross grinding of BK7 glass," Precis. Eng. 30/2, 145-153 (2006).
    [CrossRef]
  20. X. Tonnellier, P. Shore, X. Luo, P. Morantz, A. Baldwin, R. Evans, and D. D. Walker, "Wheel wear and surface/subsurface qualities when precision grinding optical materials," Proc. SPIE 6273, 627308 (2006).
    [CrossRef]
  21. L. Matson, "CTE Tailored Materials for Hybrid Mirror Systems," presented at the SOMTC Technology days, US, 17 Sept. 2003.
  22. M. Viens, "Fracture Toughness and Crack Growth of Zerodur," (Technical Memo, 1990) http://handle.dtic.mil/100.2/ADA309969
  23. R. E. Parks, "Two approaches to generating Free-Form optics," Proc. ASPE 04 Winter Top., 88-93 (2004).
  24. T. Kuriyagawa, M. S. S. Zahmaty, and K. Syoji, "A new grinding method for aspheric ceramic mirrors," J. Mater. Process. Technol. 62/4, 387-392 (1996).
    [CrossRef]
  25. C. F. Cheung, and W. B. Lee, "Modelling and Simulation of Surface Topography in Ultra-Precision Diamond Turning," Proc. Inst. Mech. Eng., ImechE Conf. 214/6, 463-480 (2000).
    [CrossRef]

2006 (2)

X. Sun, D. J. Stephenson, O. Ohnishi, and A. Baldwin, "An investigation into parallel and cross grinding of BK7 glass," Precis. Eng. 30/2, 145-153 (2006).
[CrossRef]

X. Tonnellier, P. Shore, X. Luo, P. Morantz, A. Baldwin, R. Evans, and D. D. Walker, "Wheel wear and surface/subsurface qualities when precision grinding optical materials," Proc. SPIE 6273, 627308 (2006).
[CrossRef]

2004 (1)

R. Gilmozzi, "Science and technology drivers for future giant telescopes," Proc. SPIE 5489, 1-10 (2004).
[CrossRef]

2000 (1)

C. F. Cheung, and W. B. Lee, "Modelling and Simulation of Surface Topography in Ultra-Precision Diamond Turning," Proc. Inst. Mech. Eng., ImechE Conf. 214/6, 463-480 (2000).
[CrossRef]

1999 (1)

T. M. A. Maksoud, A. A. Mokbel, and J. E. Morgan, "Evaluation of surface and sub-surface cracks of ground ceramic," J. Mater. Process. Technol. 88, 222-243 (1999).
[CrossRef]

1996 (1)

T. Kuriyagawa, M. S. S. Zahmaty, and K. Syoji, "A new grinding method for aspheric ceramic mirrors," J. Mater. Process. Technol. 62/4, 387-392 (1996).
[CrossRef]

1991 (2)

T. G. Bifano, T. A. Dow, and R. O. Scattergood, "Ductile regime grinding - A new technology for machining brittle materials," J. Eng. Ind. 113/2, 184-189 (1991).
[CrossRef]

M. J. Ball, N. A. Murphy, and P. Shore, "Electrolytically assisted "ductile" mode diamond grinding of BK7 and SF10 optical glasses," Proc. SPIE 1573, 30-38 (1991).
[CrossRef]

1987 (3)

P. P. Hed, and D. F. Edwards, "Optical glass fabrication technology 2: Relationship between surface roughness and subsurface damage," Appl. Opt. 26/21, 4677-4680 (1987).
[CrossRef]

H. K. Tonshoff, E. Brinksmeier, and F. Hetz, "Detection of microcracks," CIRP Annals 36/2, 545-552 (1987).

I. Inasaki, "Grinding of Hard and Brittle Materials," CIRP Annals 36/2, 463-471 (1987).
[CrossRef]

Appl. Opt. (1)

CIRP Annals (2)

H. K. Tonshoff, E. Brinksmeier, and F. Hetz, "Detection of microcracks," CIRP Annals 36/2, 545-552 (1987).

I. Inasaki, "Grinding of Hard and Brittle Materials," CIRP Annals 36/2, 463-471 (1987).
[CrossRef]

J. Eng. Ind. (1)

T. G. Bifano, T. A. Dow, and R. O. Scattergood, "Ductile regime grinding - A new technology for machining brittle materials," J. Eng. Ind. 113/2, 184-189 (1991).
[CrossRef]

J. Mater. Process. Technol. (2)

T. M. A. Maksoud, A. A. Mokbel, and J. E. Morgan, "Evaluation of surface and sub-surface cracks of ground ceramic," J. Mater. Process. Technol. 88, 222-243 (1999).
[CrossRef]

T. Kuriyagawa, M. S. S. Zahmaty, and K. Syoji, "A new grinding method for aspheric ceramic mirrors," J. Mater. Process. Technol. 62/4, 387-392 (1996).
[CrossRef]

Precis. Eng. (1)

X. Sun, D. J. Stephenson, O. Ohnishi, and A. Baldwin, "An investigation into parallel and cross grinding of BK7 glass," Precis. Eng. 30/2, 145-153 (2006).
[CrossRef]

Proc. Inst. Mech. Eng., ImechE Conf. (1)

C. F. Cheung, and W. B. Lee, "Modelling and Simulation of Surface Topography in Ultra-Precision Diamond Turning," Proc. Inst. Mech. Eng., ImechE Conf. 214/6, 463-480 (2000).
[CrossRef]

Proc. SPIE (3)

M. J. Ball, N. A. Murphy, and P. Shore, "Electrolytically assisted "ductile" mode diamond grinding of BK7 and SF10 optical glasses," Proc. SPIE 1573, 30-38 (1991).
[CrossRef]

X. Tonnellier, P. Shore, X. Luo, P. Morantz, A. Baldwin, R. Evans, and D. D. Walker, "Wheel wear and surface/subsurface qualities when precision grinding optical materials," Proc. SPIE 6273, 627308 (2006).
[CrossRef]

R. Gilmozzi, "Science and technology drivers for future giant telescopes," Proc. SPIE 5489, 1-10 (2004).
[CrossRef]

Other (14)

P. Shore and R. May-Miller, "Production challenge of the optical segments for extra large telescopes," Proc. Int. Progress on Adv. Optics and Sensors, 25-30 (2003).

P. Shore, P. Morantz, X. Luo, X. Tonnellier, R. Read, and R. May-Miller, "Design philosophy of the ultra precision big optix "BoX" machine," Proc. Landamap, 200-209 (2005).

X. Tonnellier, P. Shore, X. Luo, A. Baldwin, P. Morantz, T. Jin, and D. Stephenson, "Wheel wear investigations when precision grinding of optical materials using the BoX® grinding mode," Proc. 5th High Speed Machining, 177-186 (2006).

X. Tonnellier, P. Shore, X. Luo, P. Morantz, and A. Baldwin, "High performance grinding studies on optical materials suitable for large optics," Proc. 2nd CIRP High Performance Cutting (2006).

P. Shore, P. McKeown, S. Impey, and D. Stephenson, "Surface and near surface conditions of "ductile" mode ground Zerodur," Proc. 8th Int. Prec. Eng. Seminar, 365-368 (1995).

B. Lawn, Fracture of Brittle Solids (Cambridge University Press 1975).

L. Matson, "CTE Tailored Materials for Hybrid Mirror Systems," presented at the SOMTC Technology days, US, 17 Sept. 2003.

M. Viens, "Fracture Toughness and Crack Growth of Zerodur," (Technical Memo, 1990) http://handle.dtic.mil/100.2/ADA309969

R. E. Parks, "Two approaches to generating Free-Form optics," Proc. ASPE 04 Winter Top., 88-93 (2004).

J. C. Lambropoulos, "From abrasive size to subsurface damage in grinding," Optical Fab. & Testing, OSA Technical Digest, 17-18 (2000).

J. Franse, "Aspects of Precision Grinding," PhD thesis, Technische Universiteit Eindhoven (1991).

P. Shore, "Machining of optical surfaces in brittle materials using an ultra-precision machine tool," PhD thesis, Cranfield University (1995).

X. Tonnellier, P. Morantz, P. Shore, A. Baldwin, R. Evans, and D. D. Walker, "Subsurface damage caused during rapid grinding of Zerodur," Proc. ISAAT07, (to be published).

K. E. Puttick, C. Jeynes, L. Whitmore, M. R. Rudman, M. Yamasaka, P. Shore, and A. E. Gee, "Surface damage in nanoground silicon," Proc. IMECH, 49-51 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). Holroyd Edgetek 5 axis machine and b) grinding set-up used

Fig. 2.
Fig. 2.

(a). Grinding mode, b) Semi finish surface (Zerodur®)

Fig. 3.
Fig. 3.

Finish cut using D46 a) Zerodur® b) ULE®

Fig. 4.
Fig. 4.

Subsurface damage after etching – a) ULE® b) Zerodur®

Fig. 5.
Fig. 5.

Number of cracks per mm2 for different depths beneath ground surfaces - D25 wheel - a) ULE® b) Zerodur®

Fig. 6.
Fig. 6.

Number of cracks per mm2 for different depths beneath ground surfaces - D46 wheel - a) ULE® b) Zerodur®

Fig. 7.
Fig. 7.

‘Process’ related and ‘Machine dynamics’ related zones (finish cut - D25) - a) ULE® b) Zerodur®

Tables (5)

Tables Icon

Table 1. Material properties [21, 22]

Tables Icon

Table 2. Grinding wheels specifications

Tables Icon

Table 3. Grinding parameters

Tables Icon

Table 4. Surface Responses

Tables Icon

Table 5. Subsurface damage data results

Metrics