Abstract

The selection of the incident polar angle is very important in the entire design of the noncollinear acousto-optic tunable filter (AOTF). The authors discussed how the factors, including tuning range of wavelength, the acoustic frequency, the acousto-optic figure of merit, the spectral bandwidth, the spread of filtered beam and the wavelength dependence, influence the selection of the optimum incident polar angle. By an accurate theoretical analysis, a method of selecting the optimum incident angle was presented. The analysis was significant for improving the performance of the imaging AOTF from the visible to the infrared.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. G. Bucher and J. W. Carnahan, "Characterization of an acousto-optic tunable filter and use in visible spectrophotometry," Appl. Spectrosc. 53, 603-611 (1999).
    [CrossRef]
  2. N. Gupta and R. Dahmani, "Acousto-optic tunable filter based visible-to near-infraed spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
    [CrossRef]
  3. N. Gupta and V. B. Voloshinov, "Development and characterization of two-transducer imaging acousto-optic tunable filters with extended tuning range," Appl. Opt. 46, 1081-1088 (2007).
    [CrossRef] [PubMed]
  4. V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A, Pure Appl. Opt. 9, 341-347 (2007).
    [CrossRef]
  5. C. Zhang, Z. Zhang, Y. Yang, and H. Wang, "Design and analysis of a noncollinear acousto-optic tunable filter," Opt. Lett. 32, 2417-2419 (2007).
    [CrossRef] [PubMed]
  6. B. Xue, K. Xu, and H. Yamamoto, "Discussion to the equivalent point realized by the two polarized beams in AOTF system," Opt. Express 4, 139-146 (1999).
    [CrossRef] [PubMed]
  7. H. Lee, "Polarization-independent acoustooptic light modulation with large angular aperture," Appl. Opt. 27, 815-817 (1988).
    [CrossRef] [PubMed]
  8. I. C. Chang, "Noncollinear acousto-optic filter with large angular aperture," Appl. Phys. Lett. 25, 370-372 (1974).
    [CrossRef]
  9. P. A. Gass and J. R. Sambles, "Accurate design of a noncollinear acousto-optic tunable filter," Opt. Lett. 16, 429-431 (1991).
    [CrossRef] [PubMed]
  10. N. Uchida, "Optical Properties of Single-Crystal Paratellurite (TeO2)," Phys. Rev. B. 4, 3736-3745 (1971).
    [CrossRef]
  11. D. R. Suhre and J. G. Theodore, "White-light imaging by use of a multiple passband acousto-optic tunable filter," Appl. Opt. 35, 4494-4501 (1996).
    [CrossRef] [PubMed]
  12. T. Yano and A. Watanabe, "Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction," Appl. Opt.  15, 2250-2258 (1976).
    [CrossRef] [PubMed]

2007

2002

N. Gupta and R. Dahmani, "Acousto-optic tunable filter based visible-to near-infraed spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

1999

1996

1991

1988

1976

T. Yano and A. Watanabe, "Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction," Appl. Opt.  15, 2250-2258 (1976).
[CrossRef] [PubMed]

1974

I. C. Chang, "Noncollinear acousto-optic filter with large angular aperture," Appl. Phys. Lett. 25, 370-372 (1974).
[CrossRef]

1971

N. Uchida, "Optical Properties of Single-Crystal Paratellurite (TeO2)," Phys. Rev. B. 4, 3736-3745 (1971).
[CrossRef]

Appl. Opt

T. Yano and A. Watanabe, "Acoustooptic TeO2 tunable filter using far-off-axis anisotropic Bragg diffraction," Appl. Opt.  15, 2250-2258 (1976).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

I. C. Chang, "Noncollinear acousto-optic filter with large angular aperture," Appl. Phys. Lett. 25, 370-372 (1974).
[CrossRef]

Appl. Spectrosc.

J. Opt. A, Pure Appl. Opt.

V. B. Voloshinov, K. B. Yushkov, and B. B. J. Linde, "Improvement in performance of a TeO2 acousto-optic imaging spectrometer," J. Opt. A, Pure Appl. Opt. 9, 341-347 (2007).
[CrossRef]

Opt. Eng.

N. Gupta and R. Dahmani, "Acousto-optic tunable filter based visible-to near-infraed spectropolarimetric imager," Opt. Eng. 41, 1033-1038 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B.

N. Uchida, "Optical Properties of Single-Crystal Paratellurite (TeO2)," Phys. Rev. B. 4, 3736-3745 (1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The wave vector diagram of noncollinear AOTF. [001] axis is the optic axis.

Fig. 2.
Fig. 2.

The comparisons between our design method of AOTF and previous published methods. (a) The relationships between θ a and θ i . The center optical wavelength is 0.6328 µm for curve (1) and curve (2). (b) The frequency tuning relationships at the same acoustic angle θ a of 80°.

Fig. 3.
Fig. 3.

(a). Relationship of the acousto-optic figure of merit and the incident polar angle. (b) Relationships of the acoustic frequency and the incident polar angle under a series of λ.

Fig. 4.
Fig. 4.

The wavelength dependence of the spectral bandwidth at certain incident polar angles.

Fig. 5.
Fig. 5.

The relationships between the spread of diffracted beam to the unit bandpass and the incident polar angle in the crystal.

Fig. 6.
Fig. 6.

Optimum incident polar angle dependence on the optical wavelength.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n i = [ cos 2 θ i [ n o 2 ( 1 + σ ) 2 + sin 2 θ i n e 2 ] ] 1 2 ,
n d = [ cos 2 θ d [ n o 2 ( 1 σ ) 2 ] + sin 2 θ d n o 2 ] 1 2 ,
tan θ d = ( n o n e ) 2 [ ( 1 + σ ) 2 ( 1 σ ) 2 ] tan θ i .
tan ( θ a ) = ( n i sin θ i n d sin θ d ) ( n i cos θ i n d cos θ d ) .
f a = ( V a λ 0 ) [ n i 2 + n d 2 2 n i n d cos ( θ i θ d ) ] 1 2 ,
tan ( θ a ) = tan θ i { [ n o 4 n e 2 ( 1 + σ ) 6 tan 2 θ i + n e 6 ( 1 σ 2 ) 2 ] 1 2 [ n o 4 ( 1 + σ ) 6 tan 2 θ i + n o 4 n e 2 ( 1 + σ ) 4 ] 1 2 } [ n o 4 n e 2 ( 1 + σ ) 6 tan 2 θ i + n e 6 ( 1 σ 2 ) 2 ] 1 2 [ n o 2 n e 4 ( 1 σ ) 4 ( 1 + σ ) 2 tan 2 θ i + n e 6 ( 1 σ ) 4 ] 1 2 ,
M 2 ( θ a , θ i ) = M 2 [ V ss V a ( θ a ) ] 3 cos 2 θ i

Metrics