Abstract

We demonstrate, for the first time to the best of our knowledge, low-loss, Si-CMOS-compatible fabrication of single-mode chalcogenide strip waveguides. As a novel route of chalcogenide glass film patterning, lift-off allows several benefits: leverage with Si-CMOS process compatibility; ability to fabricate single-mode waveguides with core sizes down to submicron range; and reduced sidewall roughness. High-index-contrast Ge23Sb7S70 strip waveguides have been fabricated using lift-off with excellent uniformity of loss propagation and the lowest loss figure of reported to date. We also show that small core Ge23Sb7S70 rib waveguides can be fabricated via lift-off as well, with loss figures lower than 0.5 dB/cm. Additionally, we find through waveguide modal analysis that although overall transmission loss is low, the predominant source of this loss comes from scattering at the sidewalls.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. Boesewetter, C. Boussard-Pledel, B. Bureau, and M. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc. 59, 1–9 (2005).
    [Crossref] [PubMed]
  2. M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
    [Crossref]
  3. C. Florea, J. Sanghera, L. Shaw, V. Nguyen, and I. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61, 1271–1273 (2007).
    [Crossref]
  4. W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J. 27, 411–417 (2005).
    [Crossref]
  5. O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
    [Crossref]
  6. N. Ponnampalam, R. DeCorby, H. Nguyen, P. Dwivedi, C. Haugen, and J. McMullin, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12, 6270–6277 (2004).
    [Crossref] [PubMed]
  7. M. Veinguer, A. Feigel, B. Sfez, M. Klebanov, and V. Lyubin, “New Application of Inorganic Chalcogenide Photoresists in Lift-off Photolitography,” J. Optoelectron. Adv. Mater. 5, 1361–1364 (2003).
  8. C. Huang, D. Hewak, and J. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express,  12, 2501–2506 (2004).
    [Crossref] [PubMed]
  9. J. Frantz, L. Shaw, J. Sanghera, and I. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express,  14, 1797–1803 (2004).
    [Crossref]
  10. J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
    [Crossref]
  11. J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, and K. Richardson are preparing a manuscript to be called “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films.”
  12. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
    [Crossref] [PubMed]
  13. R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
    [Crossref]
  14. Y. Ruan, D. Freeman, N. Madsen, R. Jarvis, A. Rode, S. Madden, and B. Luther-Davies, “Fabrication and Characterization of Submicron Chalcogenide Waveguides,” presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia, 8–10 Dec. 2004
  15. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
    [Crossref]
  16. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor,” Opt. Express,  15, 2307 (2007).
    [Crossref] [PubMed]
  17. D. Sparacin, S. Spector, and L. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
    [Crossref]
  18. W. Li, Y. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, “Dry-etch of As2S3 thin films for optical waveguide fabrication,” J. Vac. Sci. Technol. A 23, 1626–1632 (2005).
    [Crossref]
  19. C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculation by finite difference method,” IEE Proc. Optoelectron. 141, 281–286 (1994).
    [Crossref]
  20. T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
    [Crossref]

2007 (2)

C. Florea, J. Sanghera, L. Shaw, V. Nguyen, and I. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61, 1271–1273 (2007).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor,” Opt. Express,  15, 2307 (2007).
[Crossref] [PubMed]

2006 (1)

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

2005 (6)

T. Barwicz and H. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
[Crossref]

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

D. Sparacin, S. Spector, and L. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

W. Li, Y. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, “Dry-etch of As2S3 thin films for optical waveguide fabrication,” J. Vac. Sci. Technol. A 23, 1626–1632 (2005).
[Crossref]

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J. 27, 411–417 (2005).
[Crossref]

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. Boesewetter, C. Boussard-Pledel, B. Bureau, and M. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc. 59, 1–9 (2005).
[Crossref] [PubMed]

2004 (4)

2003 (1)

M. Veinguer, A. Feigel, B. Sfez, M. Klebanov, and V. Lyubin, “New Application of Inorganic Chalcogenide Photoresists in Lift-off Photolitography,” J. Optoelectron. Adv. Mater. 5, 1361–1364 (2003).

2001 (1)

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

1999 (1)

1994 (1)

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculation by finite difference method,” IEE Proc. Optoelectron. 141, 281–286 (1994).
[Crossref]

1993 (1)

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

Adamietz, F.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Agarwal, A.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor,” Opt. Express,  15, 2307 (2007).
[Crossref] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, and K. Richardson are preparing a manuscript to be called “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films.”

Aggarwal, I.

C. Florea, J. Sanghera, L. Shaw, V. Nguyen, and I. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61, 1271–1273 (2007).
[Crossref]

J. Frantz, L. Shaw, J. Sanghera, and I. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express,  14, 1797–1803 (2004).
[Crossref]

Ahn, J.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J. 27, 411–417 (2005).
[Crossref]

Asobe, M.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

Badding, J.

Barwicz, T.

Boesewetter, D.

Boswell, R.

W. Li, Y. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, “Dry-etch of As2S3 thin films for optical waveguide fabrication,” J. Vac. Sci. Technol. A 23, 1626–1632 (2005).
[Crossref]

Boussard-Pledel, C.

Bruneel, J.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Bureau, B.

Cardinal, T.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
[Crossref]

Carlie, N.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor,” Opt. Express,  15, 2307 (2007).
[Crossref] [PubMed]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, and K. Richardson are preparing a manuscript to be called “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films.”

Chaudhuri, S.

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculation by finite difference method,” IEE Proc. Optoelectron. 141, 281–286 (1994).
[Crossref]

Choi, Y.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J. 27, 411–417 (2005).
[Crossref]

Chung, W.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J. 27, 411–417 (2005).
[Crossref]

Clement, T.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

Collier, J.

Couzi, M.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

DeCorby, R.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

N. Ponnampalam, R. DeCorby, H. Nguyen, P. Dwivedi, C. Haugen, and J. McMullin, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12, 6270–6277 (2004).
[Crossref] [PubMed]

Duguay, M.

Dwivedi, P.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

N. Ponnampalam, R. DeCorby, H. Nguyen, P. Dwivedi, C. Haugen, and J. McMullin, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12, 6270–6277 (2004).
[Crossref] [PubMed]

Efimov, O.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Feigel, A.

M. Veinguer, A. Feigel, B. Sfez, M. Klebanov, and V. Lyubin, “New Application of Inorganic Chalcogenide Photoresists in Lift-off Photolitography,” J. Optoelectron. Adv. Mater. 5, 1361–1364 (2003).

Florea, C.

C. Florea, J. Sanghera, L. Shaw, V. Nguyen, and I. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61, 1271–1273 (2007).
[Crossref]

Frantz, J.

Freeman, D.

Y. Ruan, D. Freeman, N. Madsen, R. Jarvis, A. Rode, S. Madden, and B. Luther-Davies, “Fabrication and Characterization of Submicron Chalcogenide Waveguides,” presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia, 8–10 Dec. 2004

Galstian, T.

Glebov, L.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Haugen, C.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

N. Ponnampalam, R. DeCorby, H. Nguyen, P. Dwivedi, C. Haugen, and J. McMullin, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12, 6270–6277 (2004).
[Crossref] [PubMed]

Haus, H.

Hewak, D.

Hu, J.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor,” Opt. Express,  15, 2307 (2007).
[Crossref] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, and K. Richardson are preparing a manuscript to be called “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films.”

Huang, C.

Huang, W.

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculation by finite difference method,” IEE Proc. Optoelectron. 141, 281–286 (1994).
[Crossref]

Itoh, H.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

Jarvis, R.

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
[Crossref] [PubMed]

Y. Ruan, D. Freeman, N. Madsen, R. Jarvis, A. Rode, S. Madden, and B. Luther-Davies, “Fabrication and Characterization of Submicron Chalcogenide Waveguides,” presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia, 8–10 Dec. 2004

Juncker, C.

Kanamori, T.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

Kasap, S.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

Kimerling, L.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor,” Opt. Express,  15, 2307 (2007).
[Crossref] [PubMed]

D. Sparacin, S. Spector, and L. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, and K. Richardson are preparing a manuscript to be called “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films.”

Klebanov, M.

M. Veinguer, A. Feigel, B. Sfez, M. Klebanov, and V. Lyubin, “New Application of Inorganic Chalcogenide Photoresists in Lift-off Photolitography,” J. Optoelectron. Adv. Mater. 5, 1361–1364 (2003).

Knystautas, E.

Le Coq, D.

Li, W.

W. Li, Y. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, “Dry-etch of As2S3 thin films for optical waveguide fabrication,” J. Vac. Sci. Technol. A 23, 1626–1632 (2005).
[Crossref]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
[Crossref] [PubMed]

Lucas, P.

Luther-Davies, B.

W. Li, Y. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, “Dry-etch of As2S3 thin films for optical waveguide fabrication,” J. Vac. Sci. Technol. A 23, 1626–1632 (2005).
[Crossref]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
[Crossref] [PubMed]

Y. Ruan, D. Freeman, N. Madsen, R. Jarvis, A. Rode, S. Madden, and B. Luther-Davies, “Fabrication and Characterization of Submicron Chalcogenide Waveguides,” presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia, 8–10 Dec. 2004

Lyubin, V.

M. Veinguer, A. Feigel, B. Sfez, M. Klebanov, and V. Lyubin, “New Application of Inorganic Chalcogenide Photoresists in Lift-off Photolitography,” J. Optoelectron. Adv. Mater. 5, 1361–1364 (2003).

Madden, S.

Y. Ruan, D. Freeman, N. Madsen, R. Jarvis, A. Rode, S. Madden, and B. Luther-Davies, “Fabrication and Characterization of Submicron Chalcogenide Waveguides,” presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia, 8–10 Dec. 2004

Madsen, N.

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
[Crossref] [PubMed]

Y. Ruan, D. Freeman, N. Madsen, R. Jarvis, A. Rode, S. Madden, and B. Luther-Davies, “Fabrication and Characterization of Submicron Chalcogenide Waveguides,” presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia, 8–10 Dec. 2004

McMullin, J.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

N. Ponnampalam, R. DeCorby, H. Nguyen, P. Dwivedi, C. Haugen, and J. McMullin, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12, 6270–6277 (2004).
[Crossref] [PubMed]

Meneghini, C.

Miyazawa, T.

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

Nguyen, H.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

N. Ponnampalam, R. DeCorby, H. Nguyen, P. Dwivedi, C. Haugen, and J. McMullin, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12, 6270–6277 (2004).
[Crossref] [PubMed]

Nguyen, V.

C. Florea, J. Sanghera, L. Shaw, V. Nguyen, and I. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61, 1271–1273 (2007).
[Crossref]

Pai, M.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

Park, B.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J. 27, 411–417 (2005).
[Crossref]

Park, S.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Petit, L.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor,” Opt. Express,  15, 2307 (2007).
[Crossref] [PubMed]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, and K. Richardson are preparing a manuscript to be called “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films.”

Ponnampalam, N.

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

N. Ponnampalam, R. DeCorby, H. Nguyen, P. Dwivedi, C. Haugen, and J. McMullin, “Small core rib waveguides with embedded gratings in As2Se3 glass,” Opt. Express 12, 6270–6277 (2004).
[Crossref] [PubMed]

Richardson, K.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor,” Opt. Express,  15, 2307 (2007).
[Crossref] [PubMed]

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

J. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, “Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,” J. Lightwave Technol. 17, 1184–1191 (1999).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, and K. Richardson are preparing a manuscript to be called “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films.”

Richardson, K. C.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Riley, M.

Rode, A.

W. Li, Y. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, “Dry-etch of As2S3 thin films for optical waveguide fabrication,” J. Vac. Sci. Technol. A 23, 1626–1632 (2005).
[Crossref]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
[Crossref] [PubMed]

Y. Ruan, D. Freeman, N. Madsen, R. Jarvis, A. Rode, S. Madden, and B. Luther-Davies, “Fabrication and Characterization of Submicron Chalcogenide Waveguides,” presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia, 8–10 Dec. 2004

Rodriguez, V.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Ruan, Y.

W. Li, Y. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, “Dry-etch of As2S3 thin films for optical waveguide fabrication,” J. Vac. Sci. Technol. A 23, 1626–1632 (2005).
[Crossref]

Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, “Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching,” Opt. Express 12, 5140–5145 (2004).
[Crossref] [PubMed]

Y. Ruan, D. Freeman, N. Madsen, R. Jarvis, A. Rode, S. Madden, and B. Luther-Davies, “Fabrication and Characterization of Submicron Chalcogenide Waveguides,” presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia, 8–10 Dec. 2004

Sanghera, J.

C. Florea, J. Sanghera, L. Shaw, V. Nguyen, and I. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61, 1271–1273 (2007).
[Crossref]

J. Frantz, L. Shaw, J. Sanghera, and I. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express,  14, 1797–1803 (2004).
[Crossref]

Seo, H.

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J. 27, 411–417 (2005).
[Crossref]

Sfez, B.

M. Veinguer, A. Feigel, B. Sfez, M. Klebanov, and V. Lyubin, “New Application of Inorganic Chalcogenide Photoresists in Lift-off Photolitography,” J. Optoelectron. Adv. Mater. 5, 1361–1364 (2003).

Shaw, L.

C. Florea, J. Sanghera, L. Shaw, V. Nguyen, and I. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61, 1271–1273 (2007).
[Crossref]

J. Frantz, L. Shaw, J. Sanghera, and I. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express,  14, 1797–1803 (2004).
[Crossref]

Sparacin, D.

Spector, S.

Stern, M.

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculation by finite difference method,” IEE Proc. Optoelectron. 141, 281–286 (1994).
[Crossref]

Tarasov, V.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Fabrication and Testing of Planar Chalcogenide Waveguide Integrated Microfluidic Sensor,” Opt. Express,  15, 2307 (2007).
[Crossref] [PubMed]

J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, and K. Richardson are preparing a manuscript to be called “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films.”

Van Stryland, E.

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Veinguer, M.

M. Veinguer, A. Feigel, B. Sfez, M. Klebanov, and V. Lyubin, “New Application of Inorganic Chalcogenide Photoresists in Lift-off Photolitography,” J. Optoelectron. Adv. Mater. 5, 1361–1364 (2003).

Viens, J.

Villeneuve, A.

Xu, C.

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculation by finite difference method,” IEE Proc. Optoelectron. 141, 281–286 (1994).
[Crossref]

Appl. Spectrosc. (1)

Electron. Lett. (1)

M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, “Efficient and ultrafast all-optical switching using high Δn, small core chalcogenide glass fibre,” Electron. Lett. 29, 1966–1968 (1993).
[Crossref]

Etri J. (1)

W. Chung, H. Seo, B. Park, J. Ahn, and Y. Choi, “Selenide glass optical fiber doped with Pr3+ for U-band optical amplifier,” Etri J. 27, 411–417 (2005).
[Crossref]

IEE Proc. Optoelectron. (1)

C. Xu, W. Huang, M. Stern, and S. Chaudhuri, “Full-vectorial mode calculation by finite difference method,” IEE Proc. Optoelectron. 141, 281–286 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. DeCorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, “High index contrast waveguides in chalcogenide glass and polymer,” IEEE J. Sel. Top. Quantum Electron. 11, 539–546 (2005).
[Crossref]

J. Lightwave Technol. (3)

J. Optoelectron. Adv. Mater. (1)

M. Veinguer, A. Feigel, B. Sfez, M. Klebanov, and V. Lyubin, “New Application of Inorganic Chalcogenide Photoresists in Lift-off Photolitography,” J. Optoelectron. Adv. Mater. 5, 1361–1364 (2003).

J. Vac. Sci. Technol. A (1)

W. Li, Y. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, “Dry-etch of As2S3 thin films for optical waveguide fabrication,” J. Vac. Sci. Technol. A 23, 1626–1632 (2005).
[Crossref]

Mater. Chem. Phys. (1)

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge-Sb-S,” Mater. Chem. Phys. 97, 64–70 (2006).
[Crossref]

Mater. Lett. (1)

C. Florea, J. Sanghera, L. Shaw, V. Nguyen, and I. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61, 1271–1273 (2007).
[Crossref]

Opt. Express (5)

Opt. Mater. (1)

O. Efimov, L. Glebov, K. Richardson, E. Van Stryland, T. Cardinal, S. Park, M. Couzi, and J. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379–386 (2001).
[Crossref]

Other (2)

J. Hu, V. Tarasov, A. Agarwal, and L. Kimerling Microphotonics Center, Massachusetts Institute of Technology, 77 Mass Ave, Cambridge, M.A. 02139 and N. Carlie, L. Petit, and K. Richardson are preparing a manuscript to be called “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films.”

Y. Ruan, D. Freeman, N. Madsen, R. Jarvis, A. Rode, S. Madden, and B. Luther-Davies, “Fabrication and Characterization of Submicron Chalcogenide Waveguides,” presented at the Conference on Optoelectronic and Microelectronic Materials and Devices, Brisbane, Australia, 8–10 Dec. 2004

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Schematic cross-sectional process flow of Ge23Sb7S70 waveguide fabrication by lift-off; (b) Dimensions of fabricated Ge23Sb7S70 strip and rib waveguides.

Fig. 2.
Fig. 2.

(a). Cross-sectional SEM image of a Ge23Sb7S70 waveguide before photoresist lift-off, showing a sidewall angle of ~65° and rounded corners; (b) Submicron strip waveguide morphology measured by AFM with a sidewall RMS roughness value of (11±2) nm and top surface RMS roughness of (1.6±0.3) nm.

Fig. 3.
Fig. 3.

Measured transmission loss of single-mode 0.75 µm×0.4 µm Ge23Sb7S70 strip waveguide as a function of wavelength. Loss increases for lower wavelength values, pointing to a negligible contribution from substrate leakage loss.

Fig. 4.
Fig. 4.

Statistical distributions of loss values of 1.6 µm×0.4 µm Ge23Sb7S70 strip waveguides measured from 40 individual dies across a 6” wafer, which yield an average loss number of (2.3±0.4) dB/cm. This tight distribution of waveguide loss values suggests excellent wafer-scale uniformity of the lift-off process.

Fig. 5.
Fig. 5.

Modal profiles of (a) quasi-TE mode and (b) quasi-TM mode in a 0.75 µm wide Ge23Sb7S70 strip waveguide with 65° sidewall angle, simulated using a finite difference technique, indicating the mixed-polarization nature of the modes.

Tables (1)

Tables Icon

Table 1. Measured optical transmission losses and calculated modal parameters of Ge23Sb7S70 waveguides at 1550 nm and modal parameters for fundamental TE/TM modes calculated using a finite-difference technique.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α tot = α = α bulk _ absorption + α top _ roughness + α sidewall _ roughness + α surface _ absorption + α substrate
α bulk _ absorption = Γ core α Ge 23 S b 7 S 70
α surface _ absorption = Γ surface α surface
α tot = α = Γ core α Ge 23 S b 7 S 70 + α sidewall _ roughness + Γ surface α surface + α substrate

Metrics