Abstract

We demonstrate methane sensing using a photonic bandgap fiber-based gas cell and broadband idler pulses from a periodically-poled lithium niobate femtosecond optical parametric oscillator. The hollow core of the fiber was filled with a methane:nitrogen mixture, and Fourier transform spectroscopy was used to measure transmission spectra in the 3.15–3.35 µm methane absorption region. The method has applications in gas sensing for remote or hazardous environments and potentially at very low concentrations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Konorov, A. Zheltikov, and M. Scalora, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
    [CrossRef] [PubMed]
  2. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
    [CrossRef] [PubMed]
  3. J. D. S. Shephard, W. N. MacPherson, R. R. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, "Single-mode mid-IR guidance in a hollow-core photonic crystal fiber," Opt. Express 13, 7139-7144, (2005).
    [CrossRef] [PubMed]
  4. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and S. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  5. G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. Russell, "Hollow-core PCF for guidance in the mid to far infra-red," Opt. Express 13, 6937-6946 (2005).
    [CrossRef] [PubMed]
  6. K. A. Tillman, R. R. J. Maier, D. T. Reid and E. D. McNaghten, "Mid-infrared absorption spectroscopy across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator," Appl. Phys. Lett. 85, 3366 - 3368 (2004).
    [CrossRef]
  7. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, "Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 7, S408-S414 (2005).
    [CrossRef]
  8. N. Gayraud, J. Stone, W. N. MacPherson, J. D. Shephard, R. R. Maier, J. C. Knight, D. P. Hand, and J. D. C. Jones, "Mid Infra-Red Gas Sensing Using a Hollow-Core Photonic Bandgap Fibre," in Proceedings of International Conference on Optical Fiber Sensors (OFS-18), paper ThA5, Cancún, Mexico (2006)
  9. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
    [CrossRef]

2005 (6)

S. Konorov, A. Zheltikov, and M. Scalora, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

J. D. S. Shephard, W. N. MacPherson, R. R. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, "Single-mode mid-IR guidance in a hollow-core photonic crystal fiber," Opt. Express 13, 7139-7144, (2005).
[CrossRef] [PubMed]

G. Pearce, J. Pottage, D. Bird, P. Roberts, J. Knight, and P. Russell, "Hollow-core PCF for guidance in the mid to far infra-red," Opt. Express 13, 6937-6946 (2005).
[CrossRef] [PubMed]

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, "Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 7, S408-S414 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

2004 (2)

K. A. Tillman, R. R. J. Maier, D. T. Reid and E. D. McNaghten, "Mid-infrared absorption spectroscopy across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator," Appl. Phys. Lett. 85, 3366 - 3368 (2004).
[CrossRef]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and S. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid and E. D. McNaghten, "Mid-infrared absorption spectroscopy across a 14.4THz spectral range using a broadband femtosecond optical parametric oscillator," Appl. Phys. Lett. 85, 3366 - 3368 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, "Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate," J. Opt. A: Pure Appl. Opt. 7, S408-S414 (2005).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transf. 96, 139-204 (2005).
[CrossRef]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Other (1)

N. Gayraud, J. Stone, W. N. MacPherson, J. D. Shephard, R. R. Maier, J. C. Knight, D. P. Hand, and J. D. C. Jones, "Mid Infra-Red Gas Sensing Using a Hollow-Core Photonic Bandgap Fibre," in Proceedings of International Conference on Optical Fiber Sensors (OFS-18), paper ThA5, Cancún, Mexico (2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-sectional image of a photonic bandgap fiber. The fiber shown exhibits the transmission pictured in Fig. 4. and was used to obtain spectral data shown in Fig. 5a.

Fig. 2.
Fig. 2.

Measured OPO idler tuning range in 1.2 µm cavity length steps. Every other spectrum is shown using a dashed line for clarity.

Fig. 3.
Fig. 3.

Experimental configuration. OPO idler pulses (3.0–3.4 µm) leave the cavity through mirror M1 and are then collimated with a CaF2 lens before entering a Michelson interferometer. After the interferometer the pulses are coupled into the fiber and detected with a PbSe photodiode or steered directly onto the detector, omitting the fiber (dashed beam path). Mirrors M1–M6 have high reflectivity from 900–1100 nm and high transmission at other wavelengths. Mirror M1 is coated on a CaF2 substrate. PZT, piezoelectric translator; BS, 50:50 mid-IR beamsplitter; Ge, uncoated germanium filter; ZnSe, zinc selenide lens; PBF, photonic bandgap fiber.

Fig. 4.
Fig. 4.

Spectral transmissions of six different fibers having core diameters and cladding pitches similar to the example pictured in Fig. 1.

Fig. 5.
Fig. 5.

Experimental results. (a) Idler spectra recorded after the fiber. Thick line, fiber filled with pure nitrogen; thin line, fiber filled with 5:95 methane:nitrogen mixture. (b) Experimental (thick line) and calculated (thin line) methane transmission profiles.

Metrics