Abstract

A magnetically actuated MEMS scanner with a microfabricated ferromagnetic nickel platform and thermosetting polydimethylsiloxane (PDMS) microlens is demonstrated. The device is driven by an external AC magnetic field, eliminating chip circuitry and thermal deformation from joule heating. The resonant frequency of 215.2 Hz and scanning angle of 23° of the scanner have been demonstrated. Experimental studies and optical modeling have shown that this microlens scanner achieves a scanning range of 125 µm when actuated by an external magnetic field of 22.2×10-3 Tesla flux density. The device has potential applications in in vivo medical imaging for minimally invasive diagnoses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, 2003).
    [CrossRef]
  2. H. Zeng, A. McWilliams, and S. Lam, "Optical spectroscopy and imaging for early lung cancer detection: a review," Photodiagnosis and Photodynamic Therapy 1, 111-122 (2004).
    [CrossRef]
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  4. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
    [CrossRef] [PubMed]
  5. W. R. Zipfel, R. M. Williams and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
    [CrossRef] [PubMed]
  6. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, "Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin," Biophys. J. 85, 572-580 (2003).
    [CrossRef] [PubMed]
  7. P. A. Himmer, D. L. Dickensheets, and R. A. Friholm, "Micromachined silicon nitride deformable mirrors for focus control," Opt. Lett. 26, 1280-1282 (2001).
    [CrossRef]
  8. Y. Shao, D. L. Dickensheets, and P. Himmer, "3-D MOEMS Mirror for Laser Beam Pointing and Focus Control," IEEE J. Sel. Top. Quantum Electron. 10, 528-535 (2004).
    [CrossRef]
  9. H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto. "A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope," J. Microelectromech. Syst. 12, 243-251 (2003).
    [CrossRef]
  10. H. Miyajima, K. Murakami, and M. Katashiro. "MEMS Optical Scanners for Microscopes," IEEE J. Sel. Top. Quantum Electron. 10, 514-527 (2004).
    [CrossRef]
  11. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, D. L. Dickensheets, I. A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004).
    [CrossRef]
  12. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006)
    [CrossRef] [PubMed]
  13. K. C. Maitland, H. J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, "Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging," Opt. Express 14, 8604-8612 (2006).
    [CrossRef] [PubMed]
  14. A. D. Aguirre, P. R. Herz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, M. C. Wu, "Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face imaging," Opt. Express 15, 2445-2453 (2007).
    [CrossRef] [PubMed]
  15. K. Takahashi, H. N. Kwon, K. Saruta, M. Mita, H. Fujita and H. Toshiyoshi, "A two-dimensional f-θ micro optical lens scanner with electrostatic comb-drive XY-stage," IEICE Electron. Express 2, 542-547 (2005).
    [CrossRef]
  16. S. Kwon and L. P. Lee, "Stacked two dimensional micro-lens scanner of micro confocal imaging array," in Proceeding of IEEE Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, USA, 2002), pp. 483-486.
  17. S. Kwon and L. P. Lee, "Micromachined transmissive scanning confocal microscope," Opt. Lett. 29, 706-708 (2004).
    [CrossRef] [PubMed]
  18. "Metal MUMPS" (MEMSCAP), http://www.memsrus.com/nc-mumps.metal.html
  19. H. J. Moller, Semiconductors for Solar Cells (Artech House, 1993).
  20. A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach and C. J. Seliskar, "The autofluorescence of plastic materials and chips measured under laser irradiation," Lab Chip 5, 1348-1354 (2005).
    [CrossRef] [PubMed]
  21. R. E. Fisher and B. Tadic-Galeb, Optical System Design (SPIE Press, McGraw-Hill, 2000).
  22. K. H. Jeong and L. P. Lee, "A new method of increasing numerical aperture of microlens for biophotonic MEMS," in Proceeding of IEEE Conference on Microtechnologies in Medicine & Biology (Institute of Electrical and Electronics Engineers, USA, 2002), pp.380-383.
  23. C. R. King, L. Y. Lin and M. C. Wu, "Out-of-Plane refractive microlens fabricated by surface micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
    [CrossRef]
  24. S. H. Ahn and Y. K. Kim, "Proposal of human eye’s crystalline lens-like variable focusing lens," in Proceeding of IEEE/LEOS Summer Topical Meetings in Broadband Optical Networks and Technology (Institute of Electrical and Electronics Engineers, USA, 1998), pp. 89-90.
  25. J. Chen, W. Wang, J. Fang and K. Varahramyan, "Variable -focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
    [CrossRef]
  26. W. Wang and J. Fang, "Design, fabrication and testing of a micromachined integrated tunable microlens," J. Micromech. Microeng. 16, 1221-1226 (2006).
    [CrossRef]
  27. C. Y. Chang and S. Y. Yang, "Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer," Opt. Express 14, 6253-6258 (2006).
    [CrossRef] [PubMed]
  28. J. Burck, J. Mayer and H. J. Ache, "Determination of hydrocarbons by near-infrared evanescent wave sensing with a planar waveguide structure," in Proceedings of The 8th Int. Conf. on Solid-State Sensors and Actuators and Eurosensors IX (Transducers'95, Stockholm, Sweden, 1995), pp.779-782.
  29. B. Tatian, "Fitting refractive-index data with the Sellmeier dispersion formula," Appl. Opt. 23, 4477-4485 (1984).
    [CrossRef] [PubMed]
  30. D. Poelman and P. F. Smet, "Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review," J. Phys. D: Appl. Phys. 36, 1850-1857 (2003).
    [CrossRef]
  31. S. Shaheen, J. Boissevain, W. Collier, B. V. Jacak, J. S. Lock, P. Roybal, J. Simon-Gillo, W. Sondheim, J. P. Sullivan, and H. Ziock, "Characterization and quality control of silicon microstrip detectors with an infrared diode laser system," Nucl. Instrum. Methods Phys. Res. A, Accelerators, Spectrometers, Dectors and Associated Equipment 352, 573-578 (1995)
    [CrossRef]
  32. Sony CCE specification, "ICX204AL," http://products.sel.sony.com/semi/PDF/ICX204AL.pdf>
  33. EPA (U.S. Environmental Protection Agency), EMF in your environments: Magnetic field measurement s of everyday electrical devices. EPA/402/R-92/008. (Office of Radiation and Indoor Air, U. S. Environmental Protection Agency, Washington, D.C., 1992).
    [PubMed]
  34. G. L. Barkley, J. E. Morna, Y. Takanashi, and N. Tepley, "Techniques for DC magnetoencephalography," J. Clin. Neurophysiol. 8, 189-99 (1991).
    [CrossRef] [PubMed]

2007 (1)

2006 (4)

2005 (2)

K. Takahashi, H. N. Kwon, K. Saruta, M. Mita, H. Fujita and H. Toshiyoshi, "A two-dimensional f-θ micro optical lens scanner with electrostatic comb-drive XY-stage," IEICE Electron. Express 2, 542-547 (2005).
[CrossRef]

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach and C. J. Seliskar, "The autofluorescence of plastic materials and chips measured under laser irradiation," Lab Chip 5, 1348-1354 (2005).
[CrossRef] [PubMed]

2004 (6)

J. Chen, W. Wang, J. Fang and K. Varahramyan, "Variable -focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

H. Zeng, A. McWilliams, and S. Lam, "Optical spectroscopy and imaging for early lung cancer detection: a review," Photodiagnosis and Photodynamic Therapy 1, 111-122 (2004).
[CrossRef]

Y. Shao, D. L. Dickensheets, and P. Himmer, "3-D MOEMS Mirror for Laser Beam Pointing and Focus Control," IEEE J. Sel. Top. Quantum Electron. 10, 528-535 (2004).
[CrossRef]

H. Miyajima, K. Murakami, and M. Katashiro. "MEMS Optical Scanners for Microscopes," IEEE J. Sel. Top. Quantum Electron. 10, 514-527 (2004).
[CrossRef]

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, D. L. Dickensheets, I. A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004).
[CrossRef]

S. Kwon and L. P. Lee, "Micromachined transmissive scanning confocal microscope," Opt. Lett. 29, 706-708 (2004).
[CrossRef] [PubMed]

2003 (4)

H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto. "A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope," J. Microelectromech. Syst. 12, 243-251 (2003).
[CrossRef]

W. R. Zipfel, R. M. Williams and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, "Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin," Biophys. J. 85, 572-580 (2003).
[CrossRef] [PubMed]

D. Poelman and P. F. Smet, "Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review," J. Phys. D: Appl. Phys. 36, 1850-1857 (2003).
[CrossRef]

2001 (1)

1997 (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

1996 (1)

C. R. King, L. Y. Lin and M. C. Wu, "Out-of-Plane refractive microlens fabricated by surface micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
[CrossRef]

1995 (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

1991 (1)

G. L. Barkley, J. E. Morna, Y. Takanashi, and N. Tepley, "Techniques for DC magnetoencephalography," J. Clin. Neurophysiol. 8, 189-99 (1991).
[CrossRef] [PubMed]

1984 (1)

Appl. Opt. (1)

Biophys. J. (1)

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, "Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin," Biophys. J. 85, 572-580 (2003).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Shao, D. L. Dickensheets, and P. Himmer, "3-D MOEMS Mirror for Laser Beam Pointing and Focus Control," IEEE J. Sel. Top. Quantum Electron. 10, 528-535 (2004).
[CrossRef]

H. Miyajima, K. Murakami, and M. Katashiro. "MEMS Optical Scanners for Microscopes," IEEE J. Sel. Top. Quantum Electron. 10, 514-527 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. R. King, L. Y. Lin and M. C. Wu, "Out-of-Plane refractive microlens fabricated by surface micromachining," IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
[CrossRef]

IEICE Electron. Express (1)

K. Takahashi, H. N. Kwon, K. Saruta, M. Mita, H. Fujita and H. Toshiyoshi, "A two-dimensional f-θ micro optical lens scanner with electrostatic comb-drive XY-stage," IEICE Electron. Express 2, 542-547 (2005).
[CrossRef]

J. Clin. Neurophysiol. (1)

G. L. Barkley, J. E. Morna, Y. Takanashi, and N. Tepley, "Techniques for DC magnetoencephalography," J. Clin. Neurophysiol. 8, 189-99 (1991).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, "In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast," J. Invest. Dermatol. 104, 946-952 (1995).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto. "A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope," J. Microelectromech. Syst. 12, 243-251 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

J. Chen, W. Wang, J. Fang and K. Varahramyan, "Variable -focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

W. Wang and J. Fang, "Design, fabrication and testing of a micromachined integrated tunable microlens," J. Micromech. Microeng. 16, 1221-1226 (2006).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

D. Poelman and P. F. Smet, "Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review," J. Phys. D: Appl. Phys. 36, 1850-1857 (2003).
[CrossRef]

Lab Chip (1)

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach and C. J. Seliskar, "The autofluorescence of plastic materials and chips measured under laser irradiation," Lab Chip 5, 1348-1354 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, D. L. Dickensheets, I. A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Photodiagnosis and Photodynamic Therapy (1)

H. Zeng, A. McWilliams, and S. Lam, "Optical spectroscopy and imaging for early lung cancer detection: a review," Photodiagnosis and Photodynamic Therapy 1, 111-122 (2004).
[CrossRef]

Science (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Other (11)

"Metal MUMPS" (MEMSCAP), http://www.memsrus.com/nc-mumps.metal.html

H. J. Moller, Semiconductors for Solar Cells (Artech House, 1993).

R. E. Fisher and B. Tadic-Galeb, Optical System Design (SPIE Press, McGraw-Hill, 2000).

K. H. Jeong and L. P. Lee, "A new method of increasing numerical aperture of microlens for biophotonic MEMS," in Proceeding of IEEE Conference on Microtechnologies in Medicine & Biology (Institute of Electrical and Electronics Engineers, USA, 2002), pp.380-383.

S. H. Ahn and Y. K. Kim, "Proposal of human eye’s crystalline lens-like variable focusing lens," in Proceeding of IEEE/LEOS Summer Topical Meetings in Broadband Optical Networks and Technology (Institute of Electrical and Electronics Engineers, USA, 1998), pp. 89-90.

S. Shaheen, J. Boissevain, W. Collier, B. V. Jacak, J. S. Lock, P. Roybal, J. Simon-Gillo, W. Sondheim, J. P. Sullivan, and H. Ziock, "Characterization and quality control of silicon microstrip detectors with an infrared diode laser system," Nucl. Instrum. Methods Phys. Res. A, Accelerators, Spectrometers, Dectors and Associated Equipment 352, 573-578 (1995)
[CrossRef]

Sony CCE specification, "ICX204AL," http://products.sel.sony.com/semi/PDF/ICX204AL.pdf>

EPA (U.S. Environmental Protection Agency), EMF in your environments: Magnetic field measurement s of everyday electrical devices. EPA/402/R-92/008. (Office of Radiation and Indoor Air, U. S. Environmental Protection Agency, Washington, D.C., 1992).
[PubMed]

T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, 2003).
[CrossRef]

S. Kwon and L. P. Lee, "Stacked two dimensional micro-lens scanner of micro confocal imaging array," in Proceeding of IEEE Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, USA, 2002), pp. 483-486.

J. Burck, J. Mayer and H. J. Ache, "Determination of hydrocarbons by near-infrared evanescent wave sensing with a planar waveguide structure," in Proceedings of The 8th Int. Conf. on Solid-State Sensors and Actuators and Eurosensors IX (Transducers'95, Stockholm, Sweden, 1995), pp.779-782.

Supplementary Material (1)

» Media 1: MOV (1707 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

A magnetically actuated microlens assembled with an optical fiber provides focal scanning capability.

Fig. 2.
Fig. 2.

Structure of the magnetically actuated scanning microlens

Fig. 3.
Fig. 3.

Microphotograph of a PDMS microlens with a ferromagnetic nickel platform

Fig. 4.
Fig. 4.

Schematic fabrication process of the ferromagnetic lens platform

Fig. 5.
Fig. 5.

The profile of the thermosetting PDMS microlens

Fig. 6.
Fig. 6.

The tilting of the microlens device caused by an external magnetic field

Fig. 7.
Fig. 7.

(1.66MB) Movie of the oscillating magnetic actuated microlens. [Media 1]

Fig.8.
Fig.8.

requency response of the magnetic actuated microlens scanner

Fig. 9.
Fig. 9.

The change of oscillation angle of the magnetic actuated microlens at different magnetic flux density.

Fig. 10.
Fig. 10.

Optical layout setting with Zemax ray trace.

Fig. 11.
Fig. 11.

The optical scanning trajectory from the magnetic actuated microlens at 215.2 Hz on a 4.65µm pixel size CCD: (a) Computer modeling, (b) Experiment.

Fig. 12.
Fig. 12.

Experimental and computer modeling of the optical scanning distances generated from 1064 nm near infrared laser light. The microlens scanner is operated at resonant mode.

Fig. 13.
Fig. 13.

The Hygens point spread function and the wavefront surface of the 1064 nm focal spot from mcriolens tilting : (a) 0° and (b) 11.5° from the normal of the microlens device.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k = 2 z cr 2 cz 2 1
c = [ 3 V π ( 2 + cos θ c ) ( 1 cos θ c ) 2 ] 1 3
NA = [ 1 + cos θ c ( n 1 ) n 2 ( n 1 ) 2 sin 2 θ c + 1 ] 1 2
d = 1.22 λ 2 NA

Metrics