Abstract

We report on highly efficient four-wave optical parametric amplification in a water cell pumped by an elliptically shaped, ultrashort pulsed laser beam under non-collinear phase-matching configuration. Energy conversion from pump to parametric waves as high as 25 % is obtained owing to the achievement of 1-dimensional spatial-soliton regime, which guarantees high intensity over a large interaction length and ensures high beam quality.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
    [CrossRef] [PubMed]
  2. G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
    [CrossRef]
  3. A. Dubietis, R. Butkus, and A. Piskarskas, "Trends in chirped pulse optical parametric amplification," IEEE J. Sel. Top. Quantum Electron. 12, 163-172 (2006).Q1
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego, CA, 1989.
  5. K. Inoue and T. Mukai, "Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier," Opt. Lett. 26, 10-12 (2001).
    [CrossRef]
  6. M. E. Marhic, K. K. Y. Wong, M. C. Ho, and L. G. Kazovsky, "92% pump depletion in a continous-wave onepump fiber optical parametric amplifier," Opt. Lett. 26, 620-622 (2001).
    [CrossRef]
  7. R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 A via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
    [CrossRef]
  8. A. Penzkofer, A. Laubereau, and W. Kaiser, "Stimulated short-wave radiation due to single-frequency resonances of χ(3)," Phys. Rev. Lett. 31, 863-866 (1973).
    [CrossRef]
  9. A. Penzkofer and H. J. Lehmeier, "Theoretical investigation of noncollinear phase-matched parametric fourphoton amplification of ultrashort light pulses in isotropic media," Opt. Quantum Electron. 25, 815-844 (1993).
    [CrossRef]
  10. H. Crespo, J. T. Mendonça, and A. Dos Santos, "Cascaded highly nondegenerate four-wave-mixing phenomenon in transparent isotropic condensed media," Opt. Lett. 25, 829-831 (2000).
    [CrossRef]
  11. F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, "Tunable ultrashort laser pulses generated through filamentation in gases," Phys. Rev. Lett. 97, 023904 (2006).
    [CrossRef] [PubMed]
  12. H. Schroeder, J. Liu, and S. L. Chin, "From random to controlled small-scale filamentation in water," Opt. Express 12, 4768-4774 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-20-4768.
    [CrossRef] [PubMed]
  13. M. Centurion, Y. Pu, and D. Psaltis, "Self-organization of spatial solitons," Opt. Express 13, 6202-6211 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6202.
    [CrossRef] [PubMed]
  14. A. Dubietis, E. Kucinskas, and G. Tamosauskas, "Formation of periodic multifilamentary structures by use of highly elliptical light beams," Lithuanian J. Phys. 47, 27-30 (2007). Q2Q3
    [CrossRef]
  15. A. Barthelemy, S. Maneuf, and C. Froehly, "Propagation soliton et auto-confinement de faisceaux laser par non linearit optique de Kerr," Opt. Commun. 55, 201-206 (1985).
    [CrossRef]
  16. M. Soljačić, S. Sears, and M. Segev, "Self-trapping of "Necklace" beams in self-focusing Kerr media," Phys. Rev. Lett. 81, 4851-4854 (1998). Q4
    [CrossRef]
  17. C. Anastassiou, M. Soljačić, M. Segev, E. D. Eugenieva, D. N. Cristodoulides, D. Kip, Z. H. Musslimani, and J. P. Torres, "Eliminating the transverse instabilities of Kerr solitons," Phys. Rev. Lett. 85, 4888-4891 (2000).
    [CrossRef] [PubMed]
  18. P. B. Lundquist, D. R. Andersen, and Y. S. Kivshar, "Multicolor solitons due to four-wave mixing," Phys. Rev. E 57, 3551-3555 (1998).
    [CrossRef]
  19. G. Fanjoux, J. Michaud, M. Delqué, H. Mailotte, and T. Sylvestre, "Generation of multicolor Kerr solitons by cross-phase modulation, four-wave mixing, and stimulated Raman scattering," Opt. Lett. 31, 3480-3482 (2006).
    [CrossRef] [PubMed]
  20. A. G. Van Engen, S. A. Diddams, and T. S. Clement, "Dispersion measurements of water with white-light interferometry," Appl. Opt. 37, 5679-5686 (1998).
    [CrossRef]
  21. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]

2007

A. Dubietis, E. Kucinskas, and G. Tamosauskas, "Formation of periodic multifilamentary structures by use of highly elliptical light beams," Lithuanian J. Phys. 47, 27-30 (2007). Q2Q3
[CrossRef]

2006

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, "Tunable ultrashort laser pulses generated through filamentation in gases," Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

A. Dubietis, R. Butkus, and A. Piskarskas, "Trends in chirped pulse optical parametric amplification," IEEE J. Sel. Top. Quantum Electron. 12, 163-172 (2006).Q1
[CrossRef]

G. Fanjoux, J. Michaud, M. Delqué, H. Mailotte, and T. Sylvestre, "Generation of multicolor Kerr solitons by cross-phase modulation, four-wave mixing, and stimulated Raman scattering," Opt. Lett. 31, 3480-3482 (2006).
[CrossRef] [PubMed]

2005

2004

2003

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

2001

2000

H. Crespo, J. T. Mendonça, and A. Dos Santos, "Cascaded highly nondegenerate four-wave-mixing phenomenon in transparent isotropic condensed media," Opt. Lett. 25, 829-831 (2000).
[CrossRef]

C. Anastassiou, M. Soljačić, M. Segev, E. D. Eugenieva, D. N. Cristodoulides, D. Kip, Z. H. Musslimani, and J. P. Torres, "Eliminating the transverse instabilities of Kerr solitons," Phys. Rev. Lett. 85, 4888-4891 (2000).
[CrossRef] [PubMed]

1999

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

1998

P. B. Lundquist, D. R. Andersen, and Y. S. Kivshar, "Multicolor solitons due to four-wave mixing," Phys. Rev. E 57, 3551-3555 (1998).
[CrossRef]

A. G. Van Engen, S. A. Diddams, and T. S. Clement, "Dispersion measurements of water with white-light interferometry," Appl. Opt. 37, 5679-5686 (1998).
[CrossRef]

M. Soljačić, S. Sears, and M. Segev, "Self-trapping of "Necklace" beams in self-focusing Kerr media," Phys. Rev. Lett. 81, 4851-4854 (1998). Q4
[CrossRef]

1997

1993

A. Penzkofer and H. J. Lehmeier, "Theoretical investigation of noncollinear phase-matched parametric fourphoton amplification of ultrashort light pulses in isotropic media," Opt. Quantum Electron. 25, 815-844 (1993).
[CrossRef]

1985

A. Barthelemy, S. Maneuf, and C. Froehly, "Propagation soliton et auto-confinement de faisceaux laser par non linearit optique de Kerr," Opt. Commun. 55, 201-206 (1985).
[CrossRef]

1973

A. Penzkofer, A. Laubereau, and W. Kaiser, "Stimulated short-wave radiation due to single-frequency resonances of χ(3)," Phys. Rev. Lett. 31, 863-866 (1973).
[CrossRef]

1970

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 A via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

A. Dubietis, R. Butkus, and A. Piskarskas, "Trends in chirped pulse optical parametric amplification," IEEE J. Sel. Top. Quantum Electron. 12, 163-172 (2006).Q1
[CrossRef]

Lithuanian J. Phys.

A. Dubietis, E. Kucinskas, and G. Tamosauskas, "Formation of periodic multifilamentary structures by use of highly elliptical light beams," Lithuanian J. Phys. 47, 27-30 (2007). Q2Q3
[CrossRef]

Opt. Commun.

A. Barthelemy, S. Maneuf, and C. Froehly, "Propagation soliton et auto-confinement de faisceaux laser par non linearit optique de Kerr," Opt. Commun. 55, 201-206 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

A. Penzkofer and H. J. Lehmeier, "Theoretical investigation of noncollinear phase-matched parametric fourphoton amplification of ultrashort light pulses in isotropic media," Opt. Quantum Electron. 25, 815-844 (1993).
[CrossRef]

Phys. Rev. E

P. B. Lundquist, D. R. Andersen, and Y. S. Kivshar, "Multicolor solitons due to four-wave mixing," Phys. Rev. E 57, 3551-3555 (1998).
[CrossRef]

Phys. Rev. Lett.

R. R. Alfano and S. L. Shapiro, "Emission in the region 4000 to 7000 A via four-photon coupling in glass," Phys. Rev. Lett. 24, 584-587 (1970).
[CrossRef]

A. Penzkofer, A. Laubereau, and W. Kaiser, "Stimulated short-wave radiation due to single-frequency resonances of χ(3)," Phys. Rev. Lett. 31, 863-866 (1973).
[CrossRef]

F. Théberge, N. Aközbek, W. Liu, A. Becker, and S. L. Chin, "Tunable ultrashort laser pulses generated through filamentation in gases," Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

M. Soljačić, S. Sears, and M. Segev, "Self-trapping of "Necklace" beams in self-focusing Kerr media," Phys. Rev. Lett. 81, 4851-4854 (1998). Q4
[CrossRef]

C. Anastassiou, M. Soljačić, M. Segev, E. D. Eugenieva, D. N. Cristodoulides, D. Kip, Z. H. Musslimani, and J. P. Torres, "Eliminating the transverse instabilities of Kerr solitons," Phys. Rev. Lett. 85, 4888-4891 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

G. Cerullo and S. De Silvestri, "Ultrafast optical parametric amplifiers," Rev. Sci. Instrum. 74, 1-18 (2003).
[CrossRef]

Science

M. H. Dunn and M. Ebrahimzadeh, "Parametric generation of tunable light from continous-wave to femtosecond pulses," Science 286, 1513-1517 (1999).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego, CA, 1989.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Near field intensity profiles of the pump beam at the 40-mm-long water cell input (a) and output: (b) without and (c) with the seed signal. Screen shots representing the far-field: (d) without and (e) with seed signal. Pump pulse energy is 75 µJ.

Fig. 2.
Fig. 2.

Open circles: measured pump beam FWHM diameter vs propagation distance. Dashed line: calculated diffraction spreading of 24 µm Gaussian beam.

Fig. 3.
Fig. 3.

Operational characteristics of the FWOPA seeded by ~0.1µJ signal: (a) λs =570 nm, (b) λs =490 nm.

Fig. 4.
Fig. 4.

(a) Phase matching curve for FWOPA pumped by 527 nm pulse (red curve) and measured angles of the parametric waves (open circles). The inset depicts interaction geometry. (b) energy distribution among the parametric waves at Ep =70 µJ.

Fig. 5.
Fig. 5.

Calculated photon yield in signal (red) and idler (blue) waves versus pump energy: generated photons Ntotal s and Ntotal i (solid curves) and back-converted Nback s and Nback i photons (dashed curves).

Metrics