Abstract

We use molecules to couple light into and out of microscale plasmonic waveguides. Energy transfer, mediated by surface plasmons, from donor molecules to acceptor molecules over ten micrometer distances is demonstrated. Also surface plasmon coupled emission from the donor molecules is observed at similar distances away from the excitation spot. The lithographic fabrication method we use for positioning the dye molecules allows scaling to nanometer dimensions. The use of molecules as couplers between far-field and near-field light offers the advantages that no special excitation geometry is needed, any light source can be used to excite plasmons and the excitation can be localized below the diffraction limit. Moreover, the use of molecules has the potential for integration with molecular electronics and for the use of molecular self-assembly in fabrication. Our results constitute a proof-of-principle demonstration of a plasmonic waveguide where signal in- and outcoupling is done by molecules.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 - 830 (2003).
    [CrossRef] [PubMed]
  2. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 - 314 (2005).
    [CrossRef]
  3. J. R. Heath and M. A. Ratner, "Molecular electronics," Phys. Today 56, 43 - 49 (2003)
    [CrossRef]
  4. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99,2957 - 2975 (1999).
    [CrossRef]
  5. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A, Leitner, F. R. Aussenegg, J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 - 53 (2001).
    [CrossRef]
  6. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  7. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
    [CrossRef] [PubMed]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508 - 511 (2006).
    [CrossRef] [PubMed]
  9. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762 - 1764 (2002).
    [CrossRef]
  10. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661 - 699 (1998).
    [CrossRef]
  11. P. Andrew and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002 - 1005 (2004).
    [CrossRef] [PubMed]
  12. J. M. Gunn, M. Ewald, M. Dantus, "Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding," Nano Lett. 6, 2804 - 2809 (2006).
    [CrossRef] [PubMed]
  13. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229 - 232 (2003).
    [CrossRef] [PubMed]
  14. S. Balslev, A. Mironov, D. Nilsson, A. Kristensen, "Micro-fabricated single mode polymer dye laser," Opt. Express 14, 2170 - 2177 (2006).
    [CrossRef] [PubMed]
  15. S. Tuukkanen, J. J. Toppari, A. Kuzyk, L. Hirviniemi, V. P. Hytönen, T. Ihalainen, P. Törmä, "Carbon nanotubes as electrodes for dielectrophoresis of DNA," Nano Lett. 6, 1339 - 1343 (2006).
    [CrossRef] [PubMed]
  16. The fact that for different SU-8 thicknesses the strongest signals are observed at different points (front edge for 60 nm SU-8 region as in Fig. 2 and back edge for 550 nm SU-8 region as in Fig. 4) shows that the height of the polymer layer (refractive index step) is a crucial parameter in the reflection/scattering properties of SPs [2].
  17. J. R. Lakowicz, "Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 153 - 169 (2004).
    [CrossRef]
  18. I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170 - 182 (2004).
    [CrossRef]
  19. J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission "Anal. Biochem. 337, 171 - 194 (2005).
    [CrossRef] [PubMed]
  20. I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. B 108, 12568 - 12574 (2004).
    [CrossRef] [PubMed]
  21. H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry " Photochem. Photobiol. 68, 141-142 (1998).
  22. G. Jones, W. R. Jackson, C.-Y. Choi, W. R. Bergmark, "Solvent effects on emission yield and lifetime for coumarine laser-dyes - requirement for a rotatory decay mechanism," J. Phys. Chem. 89, 294 - 300 (1985).
    [CrossRef]
  23. E. Verhagen, A. L. Tchebotareva, A. Polman, "Erbium luminescence imaging of infrared surface plasmon polaritons," Appl. Phys. Lett. 88, 121121 (2006).
    [CrossRef]
  24. E. Verhagen, L. Kuipers, A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334 - 337 (2007).
    [CrossRef] [PubMed]
  25. F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, A. Dereux "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324 - 328 (2007).
    [CrossRef]

2007

E. Verhagen, L. Kuipers, A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334 - 337 (2007).
[CrossRef] [PubMed]

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, A. Dereux "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324 - 328 (2007).
[CrossRef]

2006

S. Balslev, A. Mironov, D. Nilsson, A. Kristensen, "Micro-fabricated single mode polymer dye laser," Opt. Express 14, 2170 - 2177 (2006).
[CrossRef] [PubMed]

E. Verhagen, A. L. Tchebotareva, A. Polman, "Erbium luminescence imaging of infrared surface plasmon polaritons," Appl. Phys. Lett. 88, 121121 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508 - 511 (2006).
[CrossRef] [PubMed]

J. M. Gunn, M. Ewald, M. Dantus, "Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding," Nano Lett. 6, 2804 - 2809 (2006).
[CrossRef] [PubMed]

S. Tuukkanen, J. J. Toppari, A. Kuzyk, L. Hirviniemi, V. P. Hytönen, T. Ihalainen, P. Törmä, "Carbon nanotubes as electrodes for dielectrophoresis of DNA," Nano Lett. 6, 1339 - 1343 (2006).
[CrossRef] [PubMed]

2005

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission "Anal. Biochem. 337, 171 - 194 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 - 314 (2005).
[CrossRef]

2004

I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. B 108, 12568 - 12574 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, "Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 153 - 169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170 - 182 (2004).
[CrossRef]

P. Andrew and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002 - 1005 (2004).
[CrossRef] [PubMed]

2003

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229 - 232 (2003).
[CrossRef] [PubMed]

J. R. Heath and M. A. Ratner, "Molecular electronics," Phys. Today 56, 43 - 49 (2003)
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 - 830 (2003).
[CrossRef] [PubMed]

2002

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762 - 1764 (2002).
[CrossRef]

2001

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A, Leitner, F. R. Aussenegg, J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 - 53 (2001).
[CrossRef]

1999

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99,2957 - 2975 (1999).
[CrossRef]

1998

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661 - 699 (1998).
[CrossRef]

H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry " Photochem. Photobiol. 68, 141-142 (1998).

1985

G. Jones, W. R. Jackson, C.-Y. Choi, W. R. Bergmark, "Solvent effects on emission yield and lifetime for coumarine laser-dyes - requirement for a rotatory decay mechanism," J. Phys. Chem. 89, 294 - 300 (1985).
[CrossRef]

Anal. Biochem.

J. R. Lakowicz, "Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 153 - 169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170 - 182 (2004).
[CrossRef]

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission "Anal. Biochem. 337, 171 - 194 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett.

B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A, Leitner, F. R. Aussenegg, J. C. Weeber, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51 - 53 (2001).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762 - 1764 (2002).
[CrossRef]

E. Verhagen, A. L. Tchebotareva, A. Polman, "Erbium luminescence imaging of infrared surface plasmon polaritons," Appl. Phys. Lett. 88, 121121 (2006).
[CrossRef]

Chem. Rev.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, M. S. Feld, "Ultrasensitive chemical analysis by Raman spectroscopy," Chem. Rev. 99,2957 - 2975 (1999).
[CrossRef]

J. Mod. Opt.

W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661 - 699 (1998).
[CrossRef]

J. Phys. Chem.

G. Jones, W. R. Jackson, C.-Y. Choi, W. R. Bergmark, "Solvent effects on emission yield and lifetime for coumarine laser-dyes - requirement for a rotatory decay mechanism," J. Phys. Chem. 89, 294 - 300 (1985).
[CrossRef]

J. Phys. Chem. B

I. Gryczynski, J. Malicka, Z. Gryczynski, J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. B 108, 12568 - 12574 (2004).
[CrossRef] [PubMed]

Nano Lett.

J. M. Gunn, M. Ewald, M. Dantus, "Polarization and phase control of remote surface-plasmon-mediated two-photon-induced emission and waveguiding," Nano Lett. 6, 2804 - 2809 (2006).
[CrossRef] [PubMed]

S. Tuukkanen, J. J. Toppari, A. Kuzyk, L. Hirviniemi, V. P. Hytönen, T. Ihalainen, P. Törmä, "Carbon nanotubes as electrodes for dielectrophoresis of DNA," Nano Lett. 6, 1339 - 1343 (2006).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334 - 337 (2007).
[CrossRef] [PubMed]

Nat. Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229 - 232 (2003).
[CrossRef] [PubMed]

Nat. Phys.

F. Lopez-Tejeira, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, A. Dereux "Efficient unidirectional nanoslit couplers for surface plasmons," Nat. Phys. 3, 324 - 328 (2007).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508 - 511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824 - 830 (2003).
[CrossRef] [PubMed]

Opt. Express

Photochem. Photobiol.

H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, "PhotochemCAD: A computer-aided design and research tool in photochemistry " Photochem. Photobiol. 68, 141-142 (1998).

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep. 408, 131 - 314 (2005).
[CrossRef]

Phys. Rev. Lett.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Phys. Today

J. R. Heath and M. A. Ratner, "Molecular electronics," Phys. Today 56, 43 - 49 (2003)
[CrossRef]

Science

P. Andrew and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002 - 1005 (2004).
[CrossRef] [PubMed]

Other

The fact that for different SU-8 thicknesses the strongest signals are observed at different points (front edge for 60 nm SU-8 region as in Fig. 2 and back edge for 550 nm SU-8 region as in Fig. 4) shows that the height of the polymer layer (refractive index step) is a crucial parameter in the reflection/scattering properties of SPs [2].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A) Schematic presentation of the structure of the samples and the measurement (see text for details). B) Measured AFM image of a typical structure. The height profile along the center of the waveguide is shown on the left. The size of the square regions is 5×5 µm2.

Fig. 2.
Fig. 2.

Confocal microscope images of the plasmonic waveguides. A) An image taken with a single scanner setup, by scanning the sample with the excitation light and simultaneously collecting data in two channels: First channel, the red color corresponds to a collection band that includes emission from the acceptor (R6G; the left, right and up squares) and partly from the donor (C30, the middle square). Second channel, the grey-blue corresponds to the reflection image and shows the metal waveguide. B) An image taken with a dual scanner setup where the donor molecules are excited with 405 nm (The green circle corresponds to the area of excitation) and emission with a bandpass of 520–620 nm is collected with a second independent scanner. The contour of the waveguide is overlaid with the intensity map for easy comparison. The thickness of the acceptor layer is 60 nm and the thickness of the donor layer is 50 nm. The intensity profile along the blue dotted line, indicated in the figure, is shown on the right.

Fig. 3.
Fig. 3.

Intensity of the scattered signal at the end of the stripe as a function of the stripe length (black circles). The red line is the fitted exponential decay yielding propagation length of 7.7 µm. Inset: Confocal microscope images of one of the measured waveguides taken with the single scanner and the dual scanner setups (see Fig. 2 and text). This waveguide has 10 µm from the edge of the donor (in the middle) to the end of the stripe, where signal from scattered SPs is clearly visible in the two scanner image.

Fig. 4.
Fig. 4.

Confocal microscope images of a plasmonic channel. A) An image obtained by a dual scanner measurement where the excitation is only on the donor area in the middle and the collection is scanned over the sample, showing plasmon propagation as the scattered light along the metal stripe. Description of how the images are taken can be found in the caption of Fig. 2(B) and in the text. The center rectangular region (see Fig. 4(B)) contains the donor molecules while the rectangular region in the upper arm contains the acceptors. The rectangular region in the lower arm is an SU-8 structure otherwise analogous to the upper arm except that it does not contain any dye. The intensity profile along the blue dotted line is shown on the right. B) The spectra measured at different regions under excitation of the donor with 405 nm laser are shown in the insets (c) – (e). The reference spectra of the donor (blue) and acceptor (red) measured by direct excitation are shown for comparison. That the donor spectra is observed far away from the excitation region is a signature of surface plasmon coupled emission (SPCE), and the acceptor spectra demonstrate molecular energy transfer via surface plasmons over the ten micrometer long distance.

Fig. 5.
Fig. 5.

Normalized decay curves of the emission intensity measured at different regions (c) – (e) defined in Fig. 4, with detection bandpass corresponding to the maximum intensity of the donor (C30) or the acceptor (R6G). Each curve is measured from a different identically prepared sample. The curve labeled “direct C30” corresponds to the decay curve of directly excited donor, and other signals correspond to emission induced by excitation via SPs.

Metrics