Abstract

We proposed a new all-optical switch by using the phase modulation of spatial solitons. The proposed structure is composed of the nonlinear Mach-Zehnder interferometer (MZI) with the straight control waveguide, the uniform nonlinear medium and the nonlinear output waveguides. The local nonlinear MZI functions like a phase shifter. The light-induced index changes in the local nonlinear MZI make the output signal beam routing in the uniform nonlinear medium. The all-optical switching scheme employs angular deflection of spatial solitons controlled by phase modulation created in the local nonlinear MZI. By properly launching the control power and increasing the length of the uniform nonlinear medium, this device can be generalized to a 1×N all-optical switch. It would be a potential key component in the applications of ultra-high-speed optical communications and optical data processing system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear taperred Y-junction waveguide structure," Fiber and Integrated Optics 20, 517 (2001).
  2. M. O. Twati, T.J.F Pavlasek, "A three-wavelength Mach-Zehnder optical demultiplexer by on step ion-exchange in glass," Opt. Commun. 206, 327 (2002).
    [CrossRef]
  3. Y. D. Wu, M. H. Chen, and H. J. Tasi, "Novel all-optical switching device with localized nonlinearity," Optical Society of America, Optics in Computing Devices 297 (2002).
  4. Y. D. Wu, M. H. Chen, and R. Z. Tasy, "A new all-optical switching device by using the nonlinear Mach-Zehnder interferometer with a control waveguides," Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics I 292 (2003).
  5. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, s. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," J. Lightwave Technol. 22, 281 (2004).
    [CrossRef]
  6. Y. L. Lee et al., "Channel-selective wavelength conversion and tuning in periodically poled Ti:LiNbO3 waveguides," Opt. Express 12, 2649 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe1212-2649.
    [CrossRef]
  7. Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber and Integrated Optics 23, 387 (2004).
    [CrossRef]
  8. Y. D. Wu, "Coupled-soliton all-optical logic device with two parallel tapered waveguide," Fiber and Integrated Optics 23, 405 (2004).
    [CrossRef]
  9. Y. D. Wu, "New all-optical wavelength auto-router based on spatial solitons," Opt. Express 12, 4172 (2004), http://www.opticsexpress.org/abstract.cfm?id=89605.
    [CrossRef] [PubMed]
  10. Y. D. Wu, "All-Optical Logic Gates by Using Multibranch Waveguide Structure With Localized Optical Nonlinearity," IEEE J. Sel. Top. Quantum. Electron. 11, 307 (2005).
    [CrossRef]
  11. Y. D. Wu, "All-optical 1×N All-Optical Switching Device by Using the Phase Modulation of Spatial Solitons," Appl. Optics 44, 4144 (2005)
    [CrossRef]
  12. Y. D. Wu, " New all-optical switch based on the spatial soliton repulsion," Opt. Express 14, 4005 (2006), http://www.opticsexpress.org/abstract.cfm?id=89605.
    [CrossRef] [PubMed]
  13. Y. H. Pramono, and Endarko, "Nonlinear waveguides for optical logic and computation," Journal of Nonlinear Optical Physics & Materials 10, 209 (2001).
    [CrossRef]
  14. C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, "Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media," IEEE J. Quantum Electron. 21, 774 (1985).
    [CrossRef]
  15. S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
    [CrossRef]
  16. Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate", SPIE Design, Fabrication, and Characterization of Photonic Device II 4594, 323 (2001).
  17. Y. D. Wu and M. H. Chen, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B 19, 1737 (2002).
    [CrossRef]
  18. Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation," J. Nat. Kao. Uni. of App. Sci. 32, 133 (2002).
  19. C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, "Analyzing multilayer optical waveguide with all nonlinear layers," Opt. Express 15, 2499 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2499.
    [CrossRef] [PubMed]
  20. A. D. Boardman and P. Egan, "Optically nonlinear waves in thin films," IEEE J. Quantum Electron. 22, 319 (1986).
    [CrossRef]
  21. H. Murata, M. Izutsu, and T. Sueta, "Optical bistability and all-optical switching in novel waveguide functions with localized optical nonlinearity," J. Light. Technol. 16, 833 (1998).
    [CrossRef]
  22. Y. D. Wu and Y. C. Jang, "Analyzing and numerical study of seven-layer optical saveguide with localized nonlinear central guiding film," Proceedings Electrical and Information Engineering Symposium 24 (2003).
  23. Y. D. Wu, "Analyzing Multilayer Optical Waveguides with a Localized Arbitrary Nonlinear Guiding Film," IEEE J. Quantum. Electron. 40, 529 (2004).
    [CrossRef]
  24. Y. D. Wu, and M. H. Chen, "Method for analyzing multilayer nonlinear optical waveguide," Opt. Express 13, 7982 (2005), http://www.opticsexpress.org/abstract.cfm?id=85750.
    [CrossRef] [PubMed]
  25. X. F. Liu, M. L. Ke, B. C. Qiu, A. C. Bryce, and J. H. Marsh, "Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch," Indium Phosphide and Related Materials,2000. Conference Proceedings. 2000 International Conference 412 (2000).
  26. H. Ehlers, M. Schlak, and U. H. P. Fischer, "Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems," Optical Fiber Communication Conference and Exhibit 3, WDD66-1 (2001).
  27. L. Pavelescu, "Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides,"Semiconductor Conference, 2001, CAS 2001 Proceedings, International 1, 201 (2001).
    [CrossRef]
  28. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37 (2002).
    [CrossRef]
  29. A. M. Kan’an and P. Likam wa, "Ultrafast all-optical switching not limited by the carrier lifetime in an integrated multiple-quantum-well Mach-Zehnder interferometer," J. Opt. Soc. Am. B 14, 3217 (1997).
    [CrossRef]
  30. Y. H. Pramono and Endarko, "Nonlinear waveguides for optical logic and computation," Journal of Nonlinear Optical Physics & Materials 10, 209 (2001).
    [CrossRef]
  31. C. T. Seaton, X. Mai, G. I. Stegeman, N. G. Winful, "Nonlinear guided wave applications," Opt. Eng. 24, 593 (1985).
  32. R. A. Sammut, Q. Y. Li, and C. Pask, "Variational approximations and mode stability in planar nonlinear waveguides," J. Opt. Soc, Am. B 9, 884 (1992).
    [CrossRef]
  33. T. T. Shi and S. Chi, "Beam propagation method analysis of transverse-electric waves propagating in a nonlinear tapered planar waveguide," J. Opt. Soc. Am. B 8, 2318 (1991).
    [CrossRef]
  34. Y. Chung and N. Dagli, "As assessment of finite difference beam propagation method," IEEE J. Quantum Electron. 26, 529 (1994).

2007 (1)

2006 (1)

2005 (3)

Y. D. Wu, "All-Optical Logic Gates by Using Multibranch Waveguide Structure With Localized Optical Nonlinearity," IEEE J. Sel. Top. Quantum. Electron. 11, 307 (2005).
[CrossRef]

Y. D. Wu, "All-optical 1×N All-Optical Switching Device by Using the Phase Modulation of Spatial Solitons," Appl. Optics 44, 4144 (2005)
[CrossRef]

Y. D. Wu, and M. H. Chen, "Method for analyzing multilayer nonlinear optical waveguide," Opt. Express 13, 7982 (2005), http://www.opticsexpress.org/abstract.cfm?id=85750.
[CrossRef] [PubMed]

2004 (6)

2002 (4)

M. O. Twati, T.J.F Pavlasek, "A three-wavelength Mach-Zehnder optical demultiplexer by on step ion-exchange in glass," Opt. Commun. 206, 327 (2002).
[CrossRef]

Y. D. Wu and M. H. Chen, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B 19, 1737 (2002).
[CrossRef]

Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation," J. Nat. Kao. Uni. of App. Sci. 32, 133 (2002).

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37 (2002).
[CrossRef]

2001 (4)

Y. H. Pramono and Endarko, "Nonlinear waveguides for optical logic and computation," Journal of Nonlinear Optical Physics & Materials 10, 209 (2001).
[CrossRef]

Y. H. Pramono, and Endarko, "Nonlinear waveguides for optical logic and computation," Journal of Nonlinear Optical Physics & Materials 10, 209 (2001).
[CrossRef]

Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate", SPIE Design, Fabrication, and Characterization of Photonic Device II 4594, 323 (2001).

Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear taperred Y-junction waveguide structure," Fiber and Integrated Optics 20, 517 (2001).

1999 (1)

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

1998 (1)

H. Murata, M. Izutsu, and T. Sueta, "Optical bistability and all-optical switching in novel waveguide functions with localized optical nonlinearity," J. Light. Technol. 16, 833 (1998).
[CrossRef]

1997 (1)

1994 (1)

Y. Chung and N. Dagli, "As assessment of finite difference beam propagation method," IEEE J. Quantum Electron. 26, 529 (1994).

1992 (1)

R. A. Sammut, Q. Y. Li, and C. Pask, "Variational approximations and mode stability in planar nonlinear waveguides," J. Opt. Soc, Am. B 9, 884 (1992).
[CrossRef]

1991 (1)

1986 (1)

A. D. Boardman and P. Egan, "Optically nonlinear waves in thin films," IEEE J. Quantum Electron. 22, 319 (1986).
[CrossRef]

1985 (2)

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, "Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media," IEEE J. Quantum Electron. 21, 774 (1985).
[CrossRef]

C. T. Seaton, X. Mai, G. I. Stegeman, N. G. Winful, "Nonlinear guided wave applications," Opt. Eng. 24, 593 (1985).

Appl. Optics (1)

Y. D. Wu, "All-optical 1×N All-Optical Switching Device by Using the Phase Modulation of Spatial Solitons," Appl. Optics 44, 4144 (2005)
[CrossRef]

Fiber and Integrated Optics (3)

Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear taperred Y-junction waveguide structure," Fiber and Integrated Optics 20, 517 (2001).

Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber and Integrated Optics 23, 387 (2004).
[CrossRef]

Y. D. Wu, "Coupled-soliton all-optical logic device with two parallel tapered waveguide," Fiber and Integrated Optics 23, 405 (2004).
[CrossRef]

IEEE J. Quantum Electron. (4)

C. T. Steaton, J. D. Valera, R. L. Shoemaker, G. I. Stegeman, J. T. Chilwell, and D. Smith, "Calculations of nonlinear TE waves guided by thin dielectric films bounded by nonlinear media," IEEE J. Quantum Electron. 21, 774 (1985).
[CrossRef]

T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Quantum Electron. 38, 37 (2002).
[CrossRef]

A. D. Boardman and P. Egan, "Optically nonlinear waves in thin films," IEEE J. Quantum Electron. 22, 319 (1986).
[CrossRef]

Y. Chung and N. Dagli, "As assessment of finite difference beam propagation method," IEEE J. Quantum Electron. 26, 529 (1994).

IEEE J. Quantum. Electron. (1)

Y. D. Wu, "Analyzing Multilayer Optical Waveguides with a Localized Arbitrary Nonlinear Guiding Film," IEEE J. Quantum. Electron. 40, 529 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

Y. D. Wu, "All-Optical Logic Gates by Using Multibranch Waveguide Structure With Localized Optical Nonlinearity," IEEE J. Sel. Top. Quantum. Electron. 11, 307 (2005).
[CrossRef]

J. Light. Technol. (1)

H. Murata, M. Izutsu, and T. Sueta, "Optical bistability and all-optical switching in novel waveguide functions with localized optical nonlinearity," J. Light. Technol. 16, 833 (1998).
[CrossRef]

J. Lightwave Technol. (1)

J. Nat. Kao. Uni. of App. Sci. (1)

Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structures and the numerical simulation," J. Nat. Kao. Uni. of App. Sci. 32, 133 (2002).

J. Opt. Soc, Am. B (1)

R. A. Sammut, Q. Y. Li, and C. Pask, "Variational approximations and mode stability in planar nonlinear waveguides," J. Opt. Soc, Am. B 9, 884 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

Journal of Nonlinear Optical Physics & Materials (2)

Y. H. Pramono and Endarko, "Nonlinear waveguides for optical logic and computation," Journal of Nonlinear Optical Physics & Materials 10, 209 (2001).
[CrossRef]

Y. H. Pramono, and Endarko, "Nonlinear waveguides for optical logic and computation," Journal of Nonlinear Optical Physics & Materials 10, 209 (2001).
[CrossRef]

Opt. Commun. (2)

S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999).
[CrossRef]

M. O. Twati, T.J.F Pavlasek, "A three-wavelength Mach-Zehnder optical demultiplexer by on step ion-exchange in glass," Opt. Commun. 206, 327 (2002).
[CrossRef]

Opt. Eng. (1)

C. T. Seaton, X. Mai, G. I. Stegeman, N. G. Winful, "Nonlinear guided wave applications," Opt. Eng. 24, 593 (1985).

Opt. Express (5)

SPIE Design, Fabrication, and Characterization of Photonic Device II (1)

Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate", SPIE Design, Fabrication, and Characterization of Photonic Device II 4594, 323 (2001).

Other (6)

Y. D. Wu, M. H. Chen, and H. J. Tasi, "Novel all-optical switching device with localized nonlinearity," Optical Society of America, Optics in Computing Devices 297 (2002).

Y. D. Wu, M. H. Chen, and R. Z. Tasy, "A new all-optical switching device by using the nonlinear Mach-Zehnder interferometer with a control waveguides," Proceedings CLEO/Pacific Rim Conference on Laser and Electro-Optics I 292 (2003).

X. F. Liu, M. L. Ke, B. C. Qiu, A. C. Bryce, and J. H. Marsh, "Fabrication of monolithically integrated Mach-Zehnder asymmetric interferometer switch," Indium Phosphide and Related Materials,2000. Conference Proceedings. 2000 International Conference 412 (2000).

H. Ehlers, M. Schlak, and U. H. P. Fischer, "Multi-fiber-chip-coupling modules for monolithically integrated Mach-Zehnder interferometers for TDM/WDM communication systems," Optical Fiber Communication Conference and Exhibit 3, WDD66-1 (2001).

L. Pavelescu, "Simplified design relationships for silicon integrated optical pressure sensors based on Mach-Zehnder interferometry with antiresonant reflecting optical waveguides,"Semiconductor Conference, 2001, CAS 2001 Proceedings, International 1, 201 (2001).
[CrossRef]

Y. D. Wu and Y. C. Jang, "Analyzing and numerical study of seven-layer optical saveguide with localized nonlinear central guiding film," Proceedings Electrical and Information Engineering Symposium 24 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The proposed all-optical Mach-Zehnder waveguide interferometer structure.

Fig. 2.
Fig. 2.

The structure of multilayer optical waveguides with nonlinear guiding films.

Fig. 3.
Fig. 3.

The position shift Δd as a function of the normalized control power Pc/P0.

Fig. 4.
Fig. 4.

The evolutions of the signal beam propagating along the structure (a) with no control beam, (b) with the control power at Pc=0.0573P0, Δd=-12µm, (c) with the control power at Pc=0.0528P0, Δd=-6µm, (d) with the control power at Pc=0.0246P0, Δd=6µm, (e) with the control power at Pc=0.021P0, Δd=12µm.

Fig. 5.
Fig. 5.

The proposed structure of a 1×N all-optical switching device.

Fig. 6.
Fig. 6.

The proposed structure of a 1×7 all-optical switching device.

Fig. 7.
Fig. 7.

The evolutions of the signal beam propagating along the structure (a) with no control beam, (b) with the control power at Pc=0.061P0, Δd=-30µm, (c) with the control power at Pc=0.0578P0, Δd=-20µm, (d) with the control power at Pc=0.0529P0, Δd=-10µm, (e) with the control power at Pc=0.025P0, Δd=10µm, (f) with the control power at Pc=0.021P0, Δd=20µm, (g) with the control power at Pc=0.0118P0, Δd=30µm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 E yi = n i 2 c 2 2 E yi t 2 , i = 1 , 2 , , m
E yi ( x , z , t ) = ε i ( x ) exp [ j ( ω t β k 0 z ) ]
n i 2 = n 0 i 2 + α i ε i ( x ) 2 , i = 2 , 4 , , m 1
ε 1 ( x ) = E s exp ( p 1 x ) in the substrate
ε i ( x ) = E I ( i 2 ) exp { p i [ x ( i 1 2 ) d ( i 3 2 ) w ] } + E I ( i 1 ) { exp p i [ x ( i 1 2 ) d ( i 1 2 ) w ] }
i = 3 , 5 , , m 2 in the interaction layers
ε i ( x ) = b i c n { A i [ x ( i 2 1 ) ( d + w ) + x 0 i ] l i }
i = 2 , 4 , , m 1 in the guiding film , for β < n i
ε i ( x ) = b i c n { A i [ x ( i 2 1 ) ( d + w ) + x 0 i ] l i }
i = 2 , 4 , , m 1 in the guiding film , for β < n i
ε m ( x ) = E c exp { p m [ x ( m 1 2 ) d ( m 3 2 ) w ] } in the cladding

Metrics