Abstract

We report the results of a study aimed at the assessment of the trade-off between precision and horizontal resolution of the retrieval products of MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) operating onboard the ENVIronmental SATellite. By exploiting different observation setups we could perform the study by acting on both the retrieval and the sampling grids. Our results are compared with those previously obtained on simulated observations [Appl. Opt. 43, 1–11 (2004)]. We show that the horizontal sampling of the atmosphere operated by the spectrometer cannot be pushed beyond some limits without inducing unacceptable correlations among the retrieved profiles. These correlations show-up only when using a two-dimensional retrieval algorithm and can be evaluated through the instabilities that they trigger in the horizontal distribution of the retrieval products. In order to reduce these instabilities we compare the strategy of degrading the retrieval grid with the strategy of applying horizontal regularization. We discuss the different trade-off between precision and spatial resolution connected with the two strategies. The method adopted in this study, is applicable to any orbiting limb sounder measuring along the orbit track.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. W. Waters, W.G. Read, L. Froidevaux, R.F. Jarnot, R.E. Cofield, D.A. Flower, G.K. Lau, H.M. Pickett, M.L. Santee, D.L. Wu, M.A. Boyles, J.R. Burke, R.R. Lay, M.S. Loo, N.J. Livesey, T.A. Lungu, G.L. Manney, L.L. Nakamura, V.S. Perun, B.P. Ridenoure, Z. Shippony, P.H. Siegel, R.P. Thurstans, R.S. Harwood, H.C. Pumphrey, and M.J. Filipiak, "The UARS and EOS Microwave Limb Sounder Experiments," J. Atmos. Sci. 56, 194-218 (1999).
    [CrossRef]
  2. European Space Agency, "Envisat, MIPAS: an instrument for atmospheric chemistry and climate research," SP-1229 (European Space Reseach and Technology Centre, Noordwijk, The Netherlands, 2000).
  3. M. J. Endmann, G. Lange and B. Fladt, in Space Optics 1994: Earth Observation and Astronomy, M. G. Cerutti-Maori and P. Roussel, eds., Proc. SPIE 2209, 36 (1994).
  4. R. Beer and T. A. Glavich, in Advanced Optical Instrumentation for Remote Sensing of the Earth’s Surface from Space, G. Duchossois, F. L. Herr and R. J. Zander, eds., Proc. SPIE 1129, 42 (1989).
  5. B. J.  Kerridge, J.  Barnett, M.  Birk, S  Buehler, A-C Vandaele, M Carlotti et al., "Process Exploration through Measurements of Infrared and millimetre-wave Emitted Radiation (PREMIER)," Proposal for ESA Core Explorer Mission: CCLRC, SSTD, SSTD-RSG.
  6. M. Carlotti, "Global-Fit Approach to the Analysis of Limb-scanning Atmospheric Measurements," Appl. Opt. 27, 3250-3254 (1988).
    [CrossRef] [PubMed]
  7. M. Carlotti, B. Carli, "Approach to the Design and Data-Analysis of a Limb-Scanning Experiment," Appl. Opt. 33, 3237-3249 (1994)
    [CrossRef] [PubMed]
  8. S. Ceccherini, C. Belotti, B. Carli, P. Raspollini and M. Ridolfi, "Technical note: Regularization performances with the error consistency method in the case of retrieved atmospheric profiles," Atmos. Chem. Phys 7, 1435-1440, (2007).
    [CrossRef]
  9. N. J. Livesey and W. G. Read, "Direct retrieval of Line-of-Sight Atmospheric Structure from Limb Sounding Observations," Geophys. Res. Lett. 27, 891-894 (2000).
    [CrossRef]
  10. M. Carlotti, B.M. Dinelli, P. Raspollini, and M. Ridolfi, "Geo-fit Approach to the analysis of limb-scanning satellite measurements," Appl. Opt. 40, 1872-1885 (2001).
    [CrossRef]
  11. J. R. Warden, K. W. Bowman, and D. B. Jones, "Two-dimensional characterization of atmospheric profile retrievals from limb sounding observations," J. Quant. Spectrosc. Radiat. Transfer 86, 45-71 (2004).
    [CrossRef]
  12. T. Steck, M. Hopfner, T. v. Clarmann, U. Grabowski, "Tomographic retrieval of atmospheric parameters from infrared limb emission observations," Appl. Opt. 44, 3291-301 (2005).
    [CrossRef] [PubMed]
  13. M. Ridolfi, L. Magnani, M. Carlotti, B.M. Dinelli, "MIPAS-ENVISAT limb-sounding measurements: trade-off study for improvement of horizontal resolution," Appl. Opt. 43, 1-11 (2004).
    [CrossRef]
  14. M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B.M. Dinelli, A. Dudhia, J.-M. Flaud, M. Hoepfner, P.E. Morris, P. Raspollini, G. Stiller, and R.J. Wells, "Optimized forward model and retrieval scheme for MIPAS near-real-time data processing," Appl. Opt. 39, 1323-1340 (2000).
    [CrossRef]
  15. M. Carlotti, G. Brizzi, E. Papandrea, M. Prevedelli, M. Ridolfi, B.M. Dinelli and L. Magnani, "GMTR: two-dimensional multi-target retrieval model for MIPAS/ENVISAT observations," Appl. Opt. 45, 716-727 (2006).
    [CrossRef] [PubMed]
  16. A. Tikhonov, "On the solution of incorrectly stated problems and a method 5 of regularization," Dokl. Acad. Nauk SSSR 151, 501-504 (1963).
  17. T. Steck, "Methods for determining regularization for atmospheric retrieval problems," Appl. Opt. 41,1788-1797 (2002).
    [CrossRef] [PubMed]
  18. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics - Vol. 2 (World Scientific, Singapore, 2000).
  19. D. W. Marquardt, "An algorithm for the least-squares estimation of nonlinear parameters," SIAM J. Appl. Math. 11, 431-441 (1963).
    [CrossRef]
  20. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd edition (McGraw-Hill Higher Education, 2003).
  21. T. Steck and T. v. Clarmann, "Constrained profile retrieval applied to the observation mode of the Michelson Interferometer for Passive Atmospheric Sounding," Appl. Opt. 40, 3559-3571 (2001).
    [CrossRef]
  22. A. Dudhia, V. L. Jay, and C. D. Rodgers, "Microwindow selection for high-spectral-resolution sounders," Appl. Opt. 41,3665-3673 (2002).
    [CrossRef] [PubMed]
  23. J. J. Remedios, "Extreme Atmospheric Constituent Profiles for MIPAS," in Proceedings of the European symposium on atmospheric measurements from space, ed.(ESA publication division, 1999), pp 779-783.
  24. A. Doicu, F. Schreier, M. Hess, "Iteratively regularized Gauss-Newton method for atmospheric remote sensing," Comp. Phys. Commun. 148, 214-226 (2002).
    [CrossRef]
  25. S. Ceccherini, C. Belotti, B. Carli, P. Raspollini, M. Ridolfi, "Technical Note: Regularization performances with the error consistency method in the case of retrieved atmospheric profiles," Atmos. Chem. Phys. 7, 1435-1440 (2007).
    [CrossRef]

2007 (2)

S. Ceccherini, C. Belotti, B. Carli, P. Raspollini and M. Ridolfi, "Technical note: Regularization performances with the error consistency method in the case of retrieved atmospheric profiles," Atmos. Chem. Phys 7, 1435-1440, (2007).
[CrossRef]

S. Ceccherini, C. Belotti, B. Carli, P. Raspollini, M. Ridolfi, "Technical Note: Regularization performances with the error consistency method in the case of retrieved atmospheric profiles," Atmos. Chem. Phys. 7, 1435-1440 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (2)

J. R. Warden, K. W. Bowman, and D. B. Jones, "Two-dimensional characterization of atmospheric profile retrievals from limb sounding observations," J. Quant. Spectrosc. Radiat. Transfer 86, 45-71 (2004).
[CrossRef]

M. Ridolfi, L. Magnani, M. Carlotti, B.M. Dinelli, "MIPAS-ENVISAT limb-sounding measurements: trade-off study for improvement of horizontal resolution," Appl. Opt. 43, 1-11 (2004).
[CrossRef]

2002 (3)

2001 (2)

2000 (2)

1999 (1)

J. W. Waters, W.G. Read, L. Froidevaux, R.F. Jarnot, R.E. Cofield, D.A. Flower, G.K. Lau, H.M. Pickett, M.L. Santee, D.L. Wu, M.A. Boyles, J.R. Burke, R.R. Lay, M.S. Loo, N.J. Livesey, T.A. Lungu, G.L. Manney, L.L. Nakamura, V.S. Perun, B.P. Ridenoure, Z. Shippony, P.H. Siegel, R.P. Thurstans, R.S. Harwood, H.C. Pumphrey, and M.J. Filipiak, "The UARS and EOS Microwave Limb Sounder Experiments," J. Atmos. Sci. 56, 194-218 (1999).
[CrossRef]

1994 (1)

1988 (1)

1963 (2)

A. Tikhonov, "On the solution of incorrectly stated problems and a method 5 of regularization," Dokl. Acad. Nauk SSSR 151, 501-504 (1963).

D. W. Marquardt, "An algorithm for the least-squares estimation of nonlinear parameters," SIAM J. Appl. Math. 11, 431-441 (1963).
[CrossRef]

Appl. Opt. (10)

M. Carlotti, "Global-Fit Approach to the Analysis of Limb-scanning Atmospheric Measurements," Appl. Opt. 27, 3250-3254 (1988).
[CrossRef] [PubMed]

M. Carlotti, B. Carli, "Approach to the Design and Data-Analysis of a Limb-Scanning Experiment," Appl. Opt. 33, 3237-3249 (1994)
[CrossRef] [PubMed]

T. Steck, M. Hopfner, T. v. Clarmann, U. Grabowski, "Tomographic retrieval of atmospheric parameters from infrared limb emission observations," Appl. Opt. 44, 3291-301 (2005).
[CrossRef] [PubMed]

M. Ridolfi, L. Magnani, M. Carlotti, B.M. Dinelli, "MIPAS-ENVISAT limb-sounding measurements: trade-off study for improvement of horizontal resolution," Appl. Opt. 43, 1-11 (2004).
[CrossRef]

M. Ridolfi, B. Carli, M. Carlotti, T. von Clarmann, B.M. Dinelli, A. Dudhia, J.-M. Flaud, M. Hoepfner, P.E. Morris, P. Raspollini, G. Stiller, and R.J. Wells, "Optimized forward model and retrieval scheme for MIPAS near-real-time data processing," Appl. Opt. 39, 1323-1340 (2000).
[CrossRef]

M. Carlotti, G. Brizzi, E. Papandrea, M. Prevedelli, M. Ridolfi, B.M. Dinelli and L. Magnani, "GMTR: two-dimensional multi-target retrieval model for MIPAS/ENVISAT observations," Appl. Opt. 45, 716-727 (2006).
[CrossRef] [PubMed]

M. Carlotti, B.M. Dinelli, P. Raspollini, and M. Ridolfi, "Geo-fit Approach to the analysis of limb-scanning satellite measurements," Appl. Opt. 40, 1872-1885 (2001).
[CrossRef]

T. Steck, "Methods for determining regularization for atmospheric retrieval problems," Appl. Opt. 41,1788-1797 (2002).
[CrossRef] [PubMed]

T. Steck and T. v. Clarmann, "Constrained profile retrieval applied to the observation mode of the Michelson Interferometer for Passive Atmospheric Sounding," Appl. Opt. 40, 3559-3571 (2001).
[CrossRef]

A. Dudhia, V. L. Jay, and C. D. Rodgers, "Microwindow selection for high-spectral-resolution sounders," Appl. Opt. 41,3665-3673 (2002).
[CrossRef] [PubMed]

Atmos. Chem. Phys (1)

S. Ceccherini, C. Belotti, B. Carli, P. Raspollini and M. Ridolfi, "Technical note: Regularization performances with the error consistency method in the case of retrieved atmospheric profiles," Atmos. Chem. Phys 7, 1435-1440, (2007).
[CrossRef]

Atmos. Chem. Phys. (1)

S. Ceccherini, C. Belotti, B. Carli, P. Raspollini, M. Ridolfi, "Technical Note: Regularization performances with the error consistency method in the case of retrieved atmospheric profiles," Atmos. Chem. Phys. 7, 1435-1440 (2007).
[CrossRef]

Comp. Phys. Commun. (1)

A. Doicu, F. Schreier, M. Hess, "Iteratively regularized Gauss-Newton method for atmospheric remote sensing," Comp. Phys. Commun. 148, 214-226 (2002).
[CrossRef]

Dokl. Acad. Nauk SSSR (1)

A. Tikhonov, "On the solution of incorrectly stated problems and a method 5 of regularization," Dokl. Acad. Nauk SSSR 151, 501-504 (1963).

Geophys. Res. Lett. (1)

N. J. Livesey and W. G. Read, "Direct retrieval of Line-of-Sight Atmospheric Structure from Limb Sounding Observations," Geophys. Res. Lett. 27, 891-894 (2000).
[CrossRef]

J. Atmos. Sci. (1)

J. W. Waters, W.G. Read, L. Froidevaux, R.F. Jarnot, R.E. Cofield, D.A. Flower, G.K. Lau, H.M. Pickett, M.L. Santee, D.L. Wu, M.A. Boyles, J.R. Burke, R.R. Lay, M.S. Loo, N.J. Livesey, T.A. Lungu, G.L. Manney, L.L. Nakamura, V.S. Perun, B.P. Ridenoure, Z. Shippony, P.H. Siegel, R.P. Thurstans, R.S. Harwood, H.C. Pumphrey, and M.J. Filipiak, "The UARS and EOS Microwave Limb Sounder Experiments," J. Atmos. Sci. 56, 194-218 (1999).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. R. Warden, K. W. Bowman, and D. B. Jones, "Two-dimensional characterization of atmospheric profile retrievals from limb sounding observations," J. Quant. Spectrosc. Radiat. Transfer 86, 45-71 (2004).
[CrossRef]

SIAM J. Appl. Math. (1)

D. W. Marquardt, "An algorithm for the least-squares estimation of nonlinear parameters," SIAM J. Appl. Math. 11, 431-441 (1963).
[CrossRef]

Other (7)

P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd edition (McGraw-Hill Higher Education, 2003).

J. J. Remedios, "Extreme Atmospheric Constituent Profiles for MIPAS," in Proceedings of the European symposium on atmospheric measurements from space, ed.(ESA publication division, 1999), pp 779-783.

C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics - Vol. 2 (World Scientific, Singapore, 2000).

European Space Agency, "Envisat, MIPAS: an instrument for atmospheric chemistry and climate research," SP-1229 (European Space Reseach and Technology Centre, Noordwijk, The Netherlands, 2000).

M. J. Endmann, G. Lange and B. Fladt, in Space Optics 1994: Earth Observation and Astronomy, M. G. Cerutti-Maori and P. Roussel, eds., Proc. SPIE 2209, 36 (1994).

R. Beer and T. A. Glavich, in Advanced Optical Instrumentation for Remote Sensing of the Earth’s Surface from Space, G. Duchossois, F. L. Herr and R. J. Zander, eds., Proc. SPIE 1129, 42 (1989).

B. J.  Kerridge, J.  Barnett, M.  Birk, S  Buehler, A-C Vandaele, M Carlotti et al., "Process Exploration through Measurements of Infrared and millimetre-wave Emitted Radiation (PREMIER)," Proposal for ESA Core Explorer Mission: CCLRC, SSTD, SSTD-RSG.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Trade-off between precision and horizontal resolution for ozone retrievals. The overall precision is represented by the ESD quantifier (see text for definition). The solid and the dotted lines respectively refer to retrievals operated on real and simulated MIPAS observations. The arrow marks the reference retrieval grid of the nominal observation mode.

Fig. 2.
Fig. 2.

Variation of χ 2 R as a function of the horizontal resolution for the retrievals reported in figure 1. The drawing notations are the same of fig. 1.

Fig. 3.
Fig. 3.

Trade-off curves for the retrieval of pressure (orange), temperature (red), water (blue) and ozone (green, already shown in figure 1). The value of the ESD quantifiers is also reported (with the same colors) for the retrievals operated on reduced resolution measurements.

Fig. 4.
Fig. 4.

Percent value of the ESDs associated with the retrieved ozone VMRs. Panel (a) refers to reduced spectral resolution measurements, panel (b) refers to full spectral resolution measurements. The white bands correspond to regions of the atmosphere in which the presence of clouds invalidates the observations.

Fig. 5.
Fig. 5.

Altitude distribution of the percentage systematic error associated with the set of observations analyzed in the reduced spectral resolution measurements (solid line) and in the full spectral resolution measurements (dashed line).

Fig. 6.
Fig. 6.

Ozone VMRs retrieved by GMTR from the measurements of MIPAS with the S6 observation mode. The white bands correspond to regions of the atmosphere in which the presence of clouds invalidates the observations.

Fig. 7.
Fig. 7.

Ozone VMR values retrieved at 28 km from S6 observation mode measurements. The three curves were obtained using the reference retrieval grid (blue), using a retrieval grid in which the profiles are separated by about 550 km (green), applying regularization in the horizontal domain to the profiles retrieved in correspondence of the reference retrieval grid (red).

Fig. 8.
Fig. 8.

Absolute value of the ESDs associated with the ozone VMRs reported in Fig. 7. The solid, dotted and dot-dashed lines report respectively the reference, the dispersed-grid, and the regularized cases.

Fig. 9.
Fig. 9.

Value of the horizontal resolution associated with the ozone VMRs reported in Fig. 7. The notations are the same of Fig. 8.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ x = ( x i + 1 x i ) = [ K T S n 1 K + λ I + R ] 1 [ K T S n 1 n R ( x i x a ) ]
χ 2 = n T S n 1 n + ( x a x ) T R ( x a x ) .
V Δ x = [ K T S n 1 K + λ I + R ] 1
χ R 2 χ 2 m p
A = [ K T S n 1 K + λ I + R ] 1 K T S n 1 K
R = S a 1 + C
C = R h + R v
R v = R g 0 0 0 0 0 R g 0 0 0 0 0 0 0 0 0 0 R g 0 0 0 0 0 R g
R g = 1 Ω v 2 L v T L v
L v = l 1 l 2 0 0 0 0 l 2 l 3 0 0 0 0 . . . . 0 . . . . . . . . . . 0 0 0 l n 1 l n
l k = 1 z k z k + 1 .
R h = 1 Ω h 2 L h T L h .
l h = 1 ρ Earth · θ j θ j + 1

Metrics