Abstract

We describe a Hartmann sensor with a sensitivity of λ/15,500 at λ=820nm. We also demonstrate its application to the measurement of an ultra small change in wavefront and show that the result agrees with that expected to within λ/3,300.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Hartmann, "Bemerkungen uber den Bau und die Justirung von Spektrographen," Zt.Instrumentenkd. 20, 47 (1900).
  2. T. L. Kelly, P. J. Veitch, A. F. Brooks and J. Munch, "A differential Hartmann wavefront sensor for accurate and precise optical testing," Appl. Opt. 46, 861-866 (2007).
    [CrossRef] [PubMed]
  3. C. Castellini, F. Francini and B. Tiribilli, "Hartmann test modification for measuring ophthalmic progressive lenses," Appl. Opt. 33, 4120 (1994).
    [CrossRef] [PubMed]
  4. F. Roddier, ed., Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, England, 1999).
    [CrossRef]
  5. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida and D. H. Reitze, "Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wavefront sensor," Appl. Opt. 40, 366-374 (2001).
    [CrossRef]
  6. R. Lawrence, D. Ottaway, M. Zucker and P. Fritchel, "Active correction of thermal lensing through external radiative thermal actuation," Opt. Lett. 22, 2635-2637 (2004).
    [CrossRef]
  7. M. Smith and P. Willems, "Auxiliary Optics Support System Conceptual Design Document, Vol. 1: Thermal Compensation System," (2006), http://www.ligo.caltech.edu/docs/T/T060083-00/T060083-00.pdf>.
  8. A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke and J. Pfund, "Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts," Appl. Opt. 44, 6419-6425 (2005).
    [CrossRef] [PubMed]
  9. J. L. Rayces, "Exact relation between Wave Aberration and Ray Aberration," Opt. Acta. 11, 85-88 (1964).
    [CrossRef]
  10. W. H. Southwell, "Wave-front estimation from wave-front slope measurements," J. Opt. Soc. Am. 70, 998-1006 (1980).
    [CrossRef]
  11. P. Mercere, P. Zeitoun, M. Idir, S. Le Pape, D. Douillet, X. Levecq, G. Dovillaire, S. Boucourt, K. A. Goldberg, P. P. Naullleau and S. Rekawa, "Hartmann wave-front measurement at 13.4 nm with λEUV/120 accuracy," Opt. Lett. 28, 1534-1536 (2003).
    [CrossRef] [PubMed]
  12. A. Poteomkin, N. Andreev, I. Ivanov, E. Khazanov, A. Shaykin, and V. Zelenogorsky, "Use of a scanning Hartmann sensor for measurement of thermal lensing in TGG crystal," Proc. SPIE 4970, 10-21 (2003).
    [CrossRef]
  13. M. Kasper, D. Looze, S. Hippler, R. Davies and A. Glindemann, "Increasing the sensitivity of a Shack-Hartmann sensor," in Proceedings of the Canterbury Conference on Wavefront sensing and its applications, Canterbury (1999), http://mpia-hd.mpg.de/ALFA/PAPERS/canterbury99MEK.pdf>.

2007 (1)

2005 (1)

2004 (1)

R. Lawrence, D. Ottaway, M. Zucker and P. Fritchel, "Active correction of thermal lensing through external radiative thermal actuation," Opt. Lett. 22, 2635-2637 (2004).
[CrossRef]

2003 (2)

A. Poteomkin, N. Andreev, I. Ivanov, E. Khazanov, A. Shaykin, and V. Zelenogorsky, "Use of a scanning Hartmann sensor for measurement of thermal lensing in TGG crystal," Proc. SPIE 4970, 10-21 (2003).
[CrossRef]

P. Mercere, P. Zeitoun, M. Idir, S. Le Pape, D. Douillet, X. Levecq, G. Dovillaire, S. Boucourt, K. A. Goldberg, P. P. Naullleau and S. Rekawa, "Hartmann wave-front measurement at 13.4 nm with λEUV/120 accuracy," Opt. Lett. 28, 1534-1536 (2003).
[CrossRef] [PubMed]

2001 (1)

1994 (1)

1980 (1)

1964 (1)

J. L. Rayces, "Exact relation between Wave Aberration and Ray Aberration," Opt. Acta. 11, 85-88 (1964).
[CrossRef]

1900 (1)

J. Hartmann, "Bemerkungen uber den Bau und die Justirung von Spektrographen," Zt.Instrumentenkd. 20, 47 (1900).

Appl. Opt. (4)

Instrumentenkd. (1)

J. Hartmann, "Bemerkungen uber den Bau und die Justirung von Spektrographen," Zt.Instrumentenkd. 20, 47 (1900).

J. Opt. Soc. Am. (1)

Opt. Acta. (1)

J. L. Rayces, "Exact relation between Wave Aberration and Ray Aberration," Opt. Acta. 11, 85-88 (1964).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

A. Poteomkin, N. Andreev, I. Ivanov, E. Khazanov, A. Shaykin, and V. Zelenogorsky, "Use of a scanning Hartmann sensor for measurement of thermal lensing in TGG crystal," Proc. SPIE 4970, 10-21 (2003).
[CrossRef]

Other (3)

M. Kasper, D. Looze, S. Hippler, R. Davies and A. Glindemann, "Increasing the sensitivity of a Shack-Hartmann sensor," in Proceedings of the Canterbury Conference on Wavefront sensing and its applications, Canterbury (1999), http://mpia-hd.mpg.de/ALFA/PAPERS/canterbury99MEK.pdf>.

M. Smith and P. Willems, "Auxiliary Optics Support System Conceptual Design Document, Vol. 1: Thermal Compensation System," (2006), http://www.ligo.caltech.edu/docs/T/T060083-00/T060083-00.pdf>.

F. Roddier, ed., Adaptive Optics in Astronomy (Cambridge U. Press, Cambridge, England, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A schematic of the Hartmann wavefront sensor and the system used to test it. The sensor consists of a Hartmann plate mounted a distance L from a CCD. It was illuminated by a wavefront W emitted from a fiber-coupled super luminescent diode (SLD), the free end of the which was mounted on a micrometer-controlled translation stage.

Fig. 2.
Fig. 2.

Measured single-frame wavefront error map over a 7.2mm×7.2mm region.

Fig. 3.
Fig. 3.

The improvement in H-WFS sensitivity due to averaging over N avg Hartmann images. The solid curve shows the improvement predicted by a numerical simulation assuming only random, stationary noise in the spot centroids.

Fig. 4.
Fig. 4.

Schematic diagram showing the displacement of the Hartmann spot on the CCD due to a change in the distance between the fiber end and the H-WFS.

Fig. 5.
Fig. 5.

Measured local gradient of the wavefront change versus spot position at the CCD, y 0, due to translation of the fiber light source, averaged over (left) 1 and (right) 5000 Hartmann images.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( Δ W ) h = Δ y L = Δ z y 0 ( z 0 Δ z ) ( z 0 + L ) = Δ z h ( z 0 Δ z ) z 0 = Sh

Metrics