Abstract

We report 10-ps correlated photon pair generation in periodically-poled reverse-proton-exchange lithium niobate waveguides with integrated mode demultiplexer at a wavelength of 1.5-µm and a clock of 10 GHz. Using superconducting single photon detectors, we observed a coincidence to accidental count ratio (CAR) as high as 4000. The developed photon-pair source may find broad application in quantum information systems as well as quantum entanglement experiments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26 (2001).
    [CrossRef]
  2. K. Sanaka, K. Kawahara, and T. Kuga, "New high-efficiency source of photon pairs for Engineering Quantum Entanglement," Phys. Rev. Lett. 86, 5620 (2001).
    [CrossRef] [PubMed]
  3. A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621 (2003).
    [CrossRef]
  4. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55-μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30, 293 (2005).
    [CrossRef] [PubMed]
  5. T. Honjo, H. Takesue, and K. Inoue, "Generation of energy-time entangled photon pairs in 1.5-um band with periodically poled lithium niobate waveguide," Opt. Express 15, 1679 (2007).
    [CrossRef] [PubMed]
  6. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661 (1991).
    [CrossRef] [PubMed]
  7. C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557 (1992).
    [CrossRef] [PubMed]
  8. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, "Teleporting an unknown Quantum State via Dual Classical and EPR Channels," Phys. Rev. Lett. 70, 1895 (1993).
    [CrossRef] [PubMed]
  9. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental Quantum Teleportation," Nature 390, 575 (1997).
    [CrossRef]
  10. K. Parameswaran, R. Route, J. Kurz, R. Roussev, M. Fejer, and M. Fujimura, "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Opt. Lett. 27, 179 (2002).
    [CrossRef]
  11. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smironov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
    [CrossRef]
  12. R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S-W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-70853 (2005).
  13. X. Xie and M. Fejer, "Two-spatial-mode parametric amplifier in lithium niobate waveguides with asymmetric Y junctions," Opt. Lett. 31, 799 (2006).
    [CrossRef] [PubMed]
  14. H. Takesue and K. Inoue, "1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express,  13, 7832 (2005).
    [CrossRef] [PubMed]
  15. C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, "Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors," Opt. Express,  15, 1322 (2007).
    [CrossRef] [PubMed]

2007

2006

2005

2003

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621 (2003).
[CrossRef]

2002

2001

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26 (2001).
[CrossRef]

K. Sanaka, K. Kawahara, and T. Kuga, "New high-efficiency source of photon pairs for Engineering Quantum Entanglement," Phys. Rev. Lett. 86, 5620 (2001).
[CrossRef] [PubMed]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smironov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

1997

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental Quantum Teleportation," Nature 390, 575 (1997).
[CrossRef]

1993

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, "Teleporting an unknown Quantum State via Dual Classical and EPR Channels," Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

1992

C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557 (1992).
[CrossRef] [PubMed]

1991

A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smironov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

Electron. Lett.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26 (2001).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides," Electron. Lett. 39, 621 (2003).
[CrossRef]

Nature

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental Quantum Teleportation," Nature 390, 575 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters, "Teleporting an unknown Quantum State via Dual Classical and EPR Channels," Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

K. Sanaka, K. Kawahara, and T. Kuga, "New high-efficiency source of photon pairs for Engineering Quantum Entanglement," Phys. Rev. Lett. 86, 5620 (2001).
[CrossRef] [PubMed]

Other

R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S-W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10846-70853 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Asymmetric Y-junction device for parametric down conversion.

Fig. 2.
Fig. 2.

Histograms of the signal photon (a) and coincidence of the correlated photon pair (b) in the time domain measured by an Ortec 9308 time interval analyzer (TIA). In (a), the 0.1-ns period shows the laser’s repetition rate and the 60-ps FWHM of the histogram represents the timing jitter of the SSPD. In (b), the FWHM of the histogram of photon pair is about 0.1 ns, which is not only due to the timing jitters of the two SSPDs for the photon pair detection, but also the waveguide dispersion.

Fig. 3.
Fig. 3.

Diagram of the experimental setup. TBPF: tunable band-pass filter. VATT: variable fiber attenuator. PPLN1: a periodically-poled lithium niobate waveguide for second harmonic generation of the pump source. Pump filter: 780 nm bandpass filter to remove 1.5-µm background. PPLN2: a fiber pigtailed asymmetric Y- junction periodically-poled lithium niobate waveguide for parametric down-conversion. LPF: long-pass filter to remove the 780nm pump light and other nonlinear fluoresce. SSPD: superconducting single-photon detector. TIA: time interval analyzer. Solid lines represent fiber and dotted lines represent free space propagation.

Fig. 4.
Fig. 4.

(a). Single photon count rates from two superconducting single photon detectors respectively detecting the two photons in a correlated pair. Black squares represent signal photon and red circles idler photons. The difference in count rates at any given pump power is mainly due to different quantum efficiency of the two SSPDs in our experiment. Figure 4(b) CAR of the correlated photon pair generation. The x-axis is the 781.5nm pump power generated by the first SH chip. All points in the figure are derived from a 500 million start triggers for the TIA (Fig. 2) except for the point with highest CAR, where we used only 50 million trigger signals because of the low count rate. The lower statistics is also the main reason for its larger uncertainty.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C = ν * μ * η s * η i
C a = ν * ( ( μ + μ s ) * η s + t * d s ) * ( ( μ + μ i ) * η i + t * d i )
CAR = ( C + C a ) C a = μ * η s * η i [ ( μ + μ s ) * η s + t * d s ] * [ ( μ + μ i ) * η i + t * d i ] + 1

Metrics