R. Rodriguez-Berral, F. Mesa, and F. Medina, “Systematic and efficient root finder for computing the modal spectrum of planar layered waveguides,” Int. J. RF Microw. Comp. Eng. 14, 73–83 (2004).
[Crossref]
S. V. Boriskina, P. Sewell, and T. M. Benson “Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization,” J. Opt. Soc. Am. A 21, 393–402 (2004).
[Crossref]
X. Wang, J. Lou, C. Lu, C. L. Zhao, and W. T Ang, “Modeling of PCF with multiple reciprocity boundary element method,” Opt. Express 12, 961–966 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-961
[Crossref]
[PubMed]
H. Cheng, W. Crutchfield, M. Doery, and L. Greengard, “Fast, accurate integral equation methods for the analysis of photonic crystal fibers I: Theory,” Opt. Express 12, 3791–3805 (2004),http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-16-3791
[Crossref]
[PubMed]
S. Campbell, R. C. McPhedran, and C. Martijn de Sterke “Differential multipole method for microstructured optical fibers,” J. Opt. Soc. Am. B 21, 1919–1928 (2004).
[Crossref]
M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Coupling between two collinear air-core Bragg fibers,” J. Opt. Soc. Am. B 21, 2095–2101 (2004).
[Crossref]
N. Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada “Boundary element method for analysis of holey optical fibers,” J. Lightwave Technol. 21, 1787–1792 (2003).
[Crossref]
T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Lightwave Technol. 21, 1793–1807 (2003).
[Crossref]
P. Russell“Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref]
[PubMed]
K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam PropagationMethod Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38, 297 (2002).
[Crossref]
A. Cucinotta, S. Selleri, L. Vincent, and M. Zoboli, “Holey fiber analysis through the finite element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]
S. V. Boriskina, T.M. Benson., P. Sewell, and A. I. Nosich “Highly efficient full-vectorial integral equation solution for the bound, leaky and complex modes of dielectric waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 1225–1231 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]
A. Ferrando, E. Silvestre, J.J. Miret, P. Andres, and M.V. Andres “Full vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999).
[Crossref]
T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[Crossref]
M. Abramowitz and I. A. Stegun “Handbook of mathematical functions,” Dover, New York, (1965).
M.C.J. Large, L. Poladian, G.W. Barton, and M.A. van Eijkelenborg, “Microstructured Polymer Optical Fibres,” Springer, Sydney, (2007)
S. V. Boriskina, T.M. Benson., P. Sewell, and A. I. Nosich “Highly efficient full-vectorial integral equation solution for the bound, leaky and complex modes of dielectric waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 1225–1231 (2002).
[Crossref]
A. Bjarklev, J. Broeng, and A.S. Bjarklev “Photonic crystal fibers,” Kluwer Academic Publishers, Boston, (2003).
A. Bjarklev, J. Broeng, and A.S. Bjarklev “Photonic crystal fibers,” Kluwer Academic Publishers, Boston, (2003).
S. V. Boriskina, P. Sewell, and T. M. Benson “Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization,” J. Opt. Soc. Am. A 21, 393–402 (2004).
[Crossref]
S. V. Boriskina, T.M. Benson., P. Sewell, and A. I. Nosich “Highly efficient full-vectorial integral equation solution for the bound, leaky and complex modes of dielectric waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 1225–1231 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]
A. Bjarklev, J. Broeng, and A.S. Bjarklev “Photonic crystal fibers,” Kluwer Academic Publishers, Boston, (2003).
D. Colton and R. Kress “Integral equation methods in scattering theory,” John Wiley & Sons, New York, (1983).
A. Cucinotta, S. Selleri, L. Vincent, and M. Zoboli, “Holey fiber analysis through the finite element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]
M. S. Alam, K. Saitoh, and M. Koshiba “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett. 30, 824–826 (2005).
[Crossref]
[PubMed]
M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Coupling between two collinear air-core Bragg fibers,” J. Opt. Soc. Am. B 21, 2095–2101 (2004).
[Crossref]
K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam PropagationMethod Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38, 297 (2002).
[Crossref]
D. Colton and R. Kress “Integral equation methods in scattering theory,” John Wiley & Sons, New York, (1983).
R. Kress “Linear integral equations,” Springer-Verlag, New York, (1989).
B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express 14, 10851–10864 (2006).
[Crossref]
[PubMed]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
M.C.J. Large, L. Poladian, G.W. Barton, and M.A. van Eijkelenborg, “Microstructured Polymer Optical Fibres,” Springer, Sydney, (2007)
F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]
S. Campbell, R. C. McPhedran, and C. Martijn de Sterke “Differential multipole method for microstructured optical fibers,” J. Opt. Soc. Am. B 21, 1919–1928 (2004).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express 14, 10851–10864 (2006).
[Crossref]
[PubMed]
S. Campbell, R. C. McPhedran, and C. Martijn de Sterke “Differential multipole method for microstructured optical fibers,” J. Opt. Soc. Am. B 21, 1919–1928 (2004).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
R. Rodriguez-Berral, F. Mesa, and F. Medina, “Systematic and efficient root finder for computing the modal spectrum of planar layered waveguides,” Int. J. RF Microw. Comp. Eng. 14, 73–83 (2004).
[Crossref]
R. Rodriguez-Berral, F. Mesa, and F. Medina, “Systematic and efficient root finder for computing the modal spectrum of planar layered waveguides,” Int. J. RF Microw. Comp. Eng. 14, 73–83 (2004).
[Crossref]
S. V. Boriskina, T.M. Benson., P. Sewell, and A. I. Nosich “Highly efficient full-vectorial integral equation solution for the bound, leaky and complex modes of dielectric waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 1225–1231 (2002).
[Crossref]
F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]
M.C.J. Large, L. Poladian, G.W. Barton, and M.A. van Eijkelenborg, “Microstructured Polymer Optical Fibres,” Springer, Sydney, (2007)
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
R. Rodriguez-Berral, F. Mesa, and F. Medina, “Systematic and efficient root finder for computing the modal spectrum of planar layered waveguides,” Int. J. RF Microw. Comp. Eng. 14, 73–83 (2004).
[Crossref]
F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]
M. S. Alam, K. Saitoh, and M. Koshiba “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett. 30, 824–826 (2005).
[Crossref]
[PubMed]
M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Coupling between two collinear air-core Bragg fibers,” J. Opt. Soc. Am. B 21, 2095–2101 (2004).
[Crossref]
K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam PropagationMethod Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38, 297 (2002).
[Crossref]
A. Cucinotta, S. Selleri, L. Vincent, and M. Zoboli, “Holey fiber analysis through the finite element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]
S. V. Boriskina, P. Sewell, and T. M. Benson “Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization,” J. Opt. Soc. Am. A 21, 393–402 (2004).
[Crossref]
S. V. Boriskina, T.M. Benson., P. Sewell, and A. I. Nosich “Highly efficient full-vectorial integral equation solution for the bound, leaky and complex modes of dielectric waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 1225–1231 (2002).
[Crossref]
M. Abramowitz and I. A. Stegun “Handbook of mathematical functions,” Dover, New York, (1965).
M.C.J. Large, L. Poladian, G.W. Barton, and M.A. van Eijkelenborg, “Microstructured Polymer Optical Fibres,” Springer, Sydney, (2007)
A. Cucinotta, S. Selleri, L. Vincent, and M. Zoboli, “Holey fiber analysis through the finite element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
A. Cucinotta, S. Selleri, L. Vincent, and M. Zoboli, “Holey fiber analysis through the finite element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]
K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam PropagationMethod Based on a Finite Element Scheme: Application to Photonic Crystal Fibers,” IEEE J. Quantum Electron. 38, 297 (2002).
[Crossref]
S. V. Boriskina, T.M. Benson., P. Sewell, and A. I. Nosich “Highly efficient full-vectorial integral equation solution for the bound, leaky and complex modes of dielectric waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 1225–1231 (2002).
[Crossref]
A. Cucinotta, S. Selleri, L. Vincent, and M. Zoboli, “Holey fiber analysis through the finite element method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]
R. Rodriguez-Berral, F. Mesa, and F. Medina, “Systematic and efficient root finder for computing the modal spectrum of planar layered waveguides,” Int. J. RF Microw. Comp. Eng. 14, 73–83 (2004).
[Crossref]
N. Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada “Boundary element method for analysis of holey optical fibers,” J. Lightwave Technol. 21, 1787–1792 (2003).
[Crossref]
T. Lu and D. Yevick, “A vectorial boundary element method analysis of integrated optical waveguides,” J. Lightwave Technol. 21, 1793–1807 (2003).
[Crossref]
T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
[Crossref]
T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
[Crossref]
B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
[Crossref]
S. Campbell, R. C. McPhedran, and C. Martijn de Sterke “Differential multipole method for microstructured optical fibers,” J. Opt. Soc. Am. B 21, 1919–1928 (2004).
[Crossref]
M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Coupling between two collinear air-core Bragg fibers,” J. Opt. Soc. Am. B 21, 2095–2101 (2004).
[Crossref]
B. T. Kuhlmey, K. Pathmanandavel, and R. C. McPhedran, “Multipole analysis of photonic crystal fibers with coated inclusions,” Opt. Express 14, 10851–10864 (2006).
[Crossref]
[PubMed]
X. Wang, J. Lou, C. Lu, C. L. Zhao, and W. T Ang, “Modeling of PCF with multiple reciprocity boundary element method,” Opt. Express 12, 961–966 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-961
[Crossref]
[PubMed]
H. Cheng, W. Crutchfield, M. Doery, and L. Greengard, “Fast, accurate integral equation methods for the analysis of photonic crystal fibers I: Theory,” Opt. Express 12, 3791–3805 (2004),http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-16-3791
[Crossref]
[PubMed]
F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[Crossref]
T.A. Burks, J.C. Knight, and P.S.J. Russell “Endlessly single-mode photonic crystal fibers,” Opt. Lett. 22, 961–963 (1997).
[Crossref]
A. Ferrando, E. Silvestre, J.J. Miret, P. Andres, and M.V. Andres “Full vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999).
[Crossref]
M. S. Alam, K. Saitoh, and M. Koshiba “High group birefringence in air-core photonic bandgap fibers,” Opt. Lett. 30, 824–826 (2005).
[Crossref]
[PubMed]
A. Bjarklev, J. Broeng, and A.S. Bjarklev “Photonic crystal fibers,” Kluwer Academic Publishers, Boston, (2003).
Matlab implementation of the code is available at http://www.photonics.phys.polymtl.ca/codes.html
D. Colton and R. Kress “Integral equation methods in scattering theory,” John Wiley & Sons, New York, (1983).
R. Kress “Linear integral equations,” Springer-Verlag, New York, (1989).
M. Abramowitz and I. A. Stegun “Handbook of mathematical functions,” Dover, New York, (1965).
M.C.J. Large, L. Poladian, G.W. Barton, and M.A. van Eijkelenborg, “Microstructured Polymer Optical Fibres,” Springer, Sydney, (2007)