Abstract

We study the performance of a multichannel version [M. Vasilyev and T.I. Lakoba, Opt. Lett. 30, 1458 (2005)] of the all-optical Mamyshev regenerator in a practically important situation where one of its key components - a periodic-group-delay device - has a realistic amplitude characteristic of a bandpass filter. We show that in this case, the regenerator can no longer operate in the regime reported in our original paper. Instead, we have found a new regime in which the regenerator’s performance is robust not only to such filtering, but also to considerable variations of regenerator parameters. In this regime, the average dispersion of the regenerator must be (relatively) large and anomalous, in constrast to what was considered in all earlier studies of such (single-channel) regenerators based on spectral broadening followed by off-center filtering. In addition, hardware implementation of a regenerator in the new regime is somewhat simpler than that in the original regime.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. V. Mamyshev, "All-optical regeneration based on self-phase modulation effect," in Proceedings of the 24th European Conference on Optical Communications (ECOC, Madrid, Spain, 1998), Vol. 1, pp. 475-476.
  2. Y. Su, G. Raybon, R.-J. Essiambre, and T.-H. Her, "All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing," IEEE Photon. Technol. Lett. 15, 350-352 (2003).
    [CrossRef]
  3. T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
    [CrossRef]
  4. M. Matsumoto, "Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers," J. Lightwave Technol. 22, 1472-1482 (2004).
    [CrossRef]
  5. M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
    [CrossRef] [PubMed]
  6. M. Eiselt, "Does spectrally periodic dispersion compensation reduce non-linear effects?" in Proceedings of the 25th European Conference on Optical Communications (ECOC, Nice, France, 1999), Vol. 1, pp. 144-145.
  7. G. Bellotti and S. Bigo, "Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission," IEEE Photon. Technol. Lett. 12, 726-728 (2000).
    [CrossRef]
  8. X. Wei, X. Liu, C. Xie, and L. F. Mollenauer, "Reduction of collision-induced timing jitter in dense wavelengthdivision multiplexing by the use of periodic-group-delay dispersion compensators," Opt. Lett. 28, 983-985 (2003).
    [CrossRef] [PubMed]
  9. L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, and I. Kang, "Experimental test of dense wavelength-division multiplexing using novel, periofic-group-delay-complemented dispersion compensation and dispersion-managed solitons," Opt. Lett. 28, 2043-2045 (2003).
    [CrossRef] [PubMed]
  10. T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s × 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
    [CrossRef]
  11. D. Yang, C. Lin, W. Chen, and G. Barbarossa, "Fiber Dispersion and Dispersion Slope Compensation in a 40-Channel 10-Gb/s 3200-km Transmission Experiment Using Cascaded Single-Cavity GiresTournois Etalons," IEEE Photon. Technol. Lett. 16, 299-301 (2004).
    [CrossRef]
  12. W. Zhu, G. Barbarossa, D. Yang, and C. Lin, "Simulation and Design for a Tunable Dispersion Compensator Package," IEEE Trans. Compon. Packag. Technol. 27, 513-522 (2004).
    [CrossRef]
  13. R. L. Lachance, S. Lelievre, and Y. Painchaud, "50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator," in Optical Fiber Communications Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), Vol. 1, pp. 164-165.
  14. L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable Dispersion Compensation at 40 Gb/s using a multicavity etalon all-pass filter, with NRZ, RZ and CSRZ Modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
    [CrossRef]
  15. D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable Dispersion and Dispersion Slope Compensators for 10 Gb/s Using All-Pass Multicavity Etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
    [CrossRef]
  16. T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006).
    [CrossRef] [PubMed]
  17. A. Bertson, N.J. Doran, W. Forrysiak, and J.H.B. Nijhof, "Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion," Opt. Lett. 23, 900-902 (1998).
    [CrossRef]
  18. M. Vasilyev and T. I. Lakoba, "Fiber-Based All-Optical 2R Regeneration of Multiple WDM Channels," in Optical Fiber Communication Conference, 2005 OSA Technical Digest on CD-ROM (Optical Society of America, 2005), paper OME62.
  19. In this work, unlike in our earlier paper [5], we do not consider the 40 Gb/s case. For general scaling rules of regenerator parameters with the bit rate, we refer the reader to [5], where we also analyze the impact of higher spectral efficiency (at 40 Gb/s) on the regenerator performance. The focus of the present work is on studying the regenerator’s performance for the parameters of a specific commercial PGDD available in the lab of the second author (M.V.) and designed for 10-Gb/s applications. At the moment, we do not have the information necessary to model a 40-Gb/s-compatible PGDD, without which information we could not proceed with a similar study of a multichannel regenerator at 40 Gb/s.
  20. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5113 (2007).
    [CrossRef] [PubMed]
  21. D. F. Grosz, A. Agarwal, S. Banerjee, D. N. Maywar, and A. P. Küng, "All-Raman ultralong-haul single-wideband DWDM transmission systems with OADM capability," J. Lightwave Technol. 22, 423-432 (2004).
    [CrossRef]
  22. L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, "Wavelength division multiplexing with solitons in ultralongdistance transmission using lumped amplifiers," J. Lightwave Technol. 9, 362-367 (1991).
    [CrossRef]

2007 (1)

2006 (1)

2005 (1)

2004 (5)

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

M. Matsumoto, "Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers," J. Lightwave Technol. 22, 1472-1482 (2004).
[CrossRef]

D. Yang, C. Lin, W. Chen, and G. Barbarossa, "Fiber Dispersion and Dispersion Slope Compensation in a 40-Channel 10-Gb/s 3200-km Transmission Experiment Using Cascaded Single-Cavity GiresTournois Etalons," IEEE Photon. Technol. Lett. 16, 299-301 (2004).
[CrossRef]

W. Zhu, G. Barbarossa, D. Yang, and C. Lin, "Simulation and Design for a Tunable Dispersion Compensator Package," IEEE Trans. Compon. Packag. Technol. 27, 513-522 (2004).
[CrossRef]

D. F. Grosz, A. Agarwal, S. Banerjee, D. N. Maywar, and A. P. Küng, "All-Raman ultralong-haul single-wideband DWDM transmission systems with OADM capability," J. Lightwave Technol. 22, 423-432 (2004).
[CrossRef]

2003 (5)

Y. Su, G. Raybon, R.-J. Essiambre, and T.-H. Her, "All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing," IEEE Photon. Technol. Lett. 15, 350-352 (2003).
[CrossRef]

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable Dispersion and Dispersion Slope Compensators for 10 Gb/s Using All-Pass Multicavity Etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

X. Wei, X. Liu, C. Xie, and L. F. Mollenauer, "Reduction of collision-induced timing jitter in dense wavelengthdivision multiplexing by the use of periodic-group-delay dispersion compensators," Opt. Lett. 28, 983-985 (2003).
[CrossRef] [PubMed]

L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, and I. Kang, "Experimental test of dense wavelength-division multiplexing using novel, periofic-group-delay-complemented dispersion compensation and dispersion-managed solitons," Opt. Lett. 28, 2043-2045 (2003).
[CrossRef] [PubMed]

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s × 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
[CrossRef]

2002 (1)

2000 (1)

G. Bellotti and S. Bigo, "Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission," IEEE Photon. Technol. Lett. 12, 726-728 (2000).
[CrossRef]

1998 (1)

1991 (1)

L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, "Wavelength division multiplexing with solitons in ultralongdistance transmission using lumped amplifiers," J. Lightwave Technol. 9, 362-367 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

Y. Su, G. Raybon, R.-J. Essiambre, and T.-H. Her, "All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing," IEEE Photon. Technol. Lett. 15, 350-352 (2003).
[CrossRef]

T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004).
[CrossRef]

T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s × 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003).
[CrossRef]

D. Yang, C. Lin, W. Chen, and G. Barbarossa, "Fiber Dispersion and Dispersion Slope Compensation in a 40-Channel 10-Gb/s 3200-km Transmission Experiment Using Cascaded Single-Cavity GiresTournois Etalons," IEEE Photon. Technol. Lett. 16, 299-301 (2004).
[CrossRef]

G. Bellotti and S. Bigo, "Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission," IEEE Photon. Technol. Lett. 12, 726-728 (2000).
[CrossRef]

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable Dispersion and Dispersion Slope Compensators for 10 Gb/s Using All-Pass Multicavity Etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

IEEE Trans. Compon. Packag. Technol. (1)

W. Zhu, G. Barbarossa, D. Yang, and C. Lin, "Simulation and Design for a Tunable Dispersion Compensator Package," IEEE Trans. Compon. Packag. Technol. 27, 513-522 (2004).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (2)

Opt. Lett. (4)

Other (5)

M. Eiselt, "Does spectrally periodic dispersion compensation reduce non-linear effects?" in Proceedings of the 25th European Conference on Optical Communications (ECOC, Nice, France, 1999), Vol. 1, pp. 144-145.

R. L. Lachance, S. Lelievre, and Y. Painchaud, "50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator," in Optical Fiber Communications Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), Vol. 1, pp. 164-165.

P. V. Mamyshev, "All-optical regeneration based on self-phase modulation effect," in Proceedings of the 24th European Conference on Optical Communications (ECOC, Madrid, Spain, 1998), Vol. 1, pp. 475-476.

M. Vasilyev and T. I. Lakoba, "Fiber-Based All-Optical 2R Regeneration of Multiple WDM Channels," in Optical Fiber Communication Conference, 2005 OSA Technical Digest on CD-ROM (Optical Society of America, 2005), paper OME62.

In this work, unlike in our earlier paper [5], we do not consider the 40 Gb/s case. For general scaling rules of regenerator parameters with the bit rate, we refer the reader to [5], where we also analyze the impact of higher spectral efficiency (at 40 Gb/s) on the regenerator performance. The focus of the present work is on studying the regenerator’s performance for the parameters of a specific commercial PGDD available in the lab of the second author (M.V.) and designed for 10-Gb/s applications. At the moment, we do not have the information necessary to model a 40-Gb/s-compatible PGDD, without which information we could not proceed with a similar study of a multichannel regenerator at 40 Gb/s.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Regenerator input for single-channel simulations.

Fig. 2.
Fig. 2.

Input-output power transfer curves of the CD (a) and DM (b,c) regenerators of the same total length of 8 km. In the DM cases, the PGDDs have a constant amplitude characteristic (i.e., no filtering), and HNLF consists of (b) 16×0.5-km and (c) 8×1-km sections. The other parameters are listed in the text. Note that according to Eq. (2), the dispersion map strengths increase from S=0 (case (a)) to S=0.15 (case (b)) to S=0.30 (case (c)). In all figures, the average dispersions are, from top to bottom, -8, -5, -2, and +1 ps/nm/km. Within each figure, solid and dashed lines of the same color represent, respectively, the maximum and minimum powers of the regenerated ONEs for the same average dispersion.

Fig. 3.
Fig. 3.

Blue line: Spectral density of the broadened pulses at the output of the DM regenerator shown in Fig. 2(b) with D av=-4 ps/nm/km and input peak power of 280 mW. Red solid and black dashed lines: (squared) amplitude responses of modeled PGDD and OBPF. Note that since a regenerator contains several PGDDs, the wings (extending beyond 30 GHz from the channel center) of the signal spectrum in in the presence of PGDD’s amplitude response would be filtered stronger than it may appear from the response of a single PGDD shown above.

Fig. 4.
Fig. 4.

Input-output power transfer curves of the DM regenerators similar to those shown in Fig. 2(b) (panel (a)) and Fig. 2(c) (panel (b)), except that the PGDDs now have an amplitude characteristic of a 110-GHz-wide 3rd-order Gaussian. Within each figure, solid and dashed lines of the same color represent, respectively, the maximum and minimum powers of the regenerated ONEs for the same average dispersion. Only the few “best” curves for each case are shown. The average dispersion values are quoted in units of ps/nm/km. Note that in (a), the range of the input powers in slightly increased compared to Fig. 2 to better show the details of the curves.

Fig. 5.
Fig. 5.

Input-output power transfer curves of the DM regenerator in the new regime. The PGDDs have an amplitude characteristic of a 110-GHz-wide 3rd-order Gaussian, as in Fig. 4; in panel (b), the central frequencies of all the PGDDs are shifted by 10 GHz from the channel’s center. The numbers of cells with 1.25-km HNLF sections are as indicated in the plots. The average dispersions are, from top to bottom, +10, +20 (thinner curves), and +30 ps/nm/km. Within each figure, solid and dashed lines of the same color represent, respectively, the maximum and minimum powers of the regenerated ONEs for the same average dispersion.

Fig. 6.
Fig. 6.

Eye diagrams for a regenerator with six 1.25-km cells and D av=15 ps/nm/km. The input signal has the average peak power of 235 mW. Panel (a) shows the input signal and panel (b) shows the output of a single-channel regenerator. Panels (c)–(f) show the worst channel for the five-channel output. The PGDDs are 110 GHz wide for (b)–(e) and centered at the channels for (b)–(d) and shifted from them by 20 GHz for (e). Panel (f) corresponds to the case where all PGDDs are replaced by fiber DCMs. All outputs (b)–(f) except (d) are obtained with the OBPF offset by 25 GHz from the channel’s center; in (d), the OBPF is offset by 20 GHz. The eye-opening improvements over the input (a) are, in dB: 2.1 (b), 1.0 (c), 0.9 (d), 1.4 (e), 0.3 (f).

Fig. 7.
Fig. 7.

Same as in Fig. 5(a), but the PGDD and HNLF losses are taken into account and are compensated after every second (a) and third (b) cells.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D av = D HNLF L HNLF + 𝓓 PGDD L HNLF ,
S λ 2 2 π c D HNLF L HNLF 𝓓 PGDD T FWHM 2 λ 2 2 π c 2 D HNLF L HNLF T FWHM 2 ,

Metrics