Abstract

Chip-size wavelength detectors are composed from a linear variable band-pass filter and a photodetector array. The filter converts the incident spectral distribution into a spatial distribution that is recorded by the detector array. This concept enables very compact and rugged spectrometers due to the monolithic integration of all functional components on a single chip. This type of spectrometer reveals its most convincing advantages through appropriate systems integration. We discuss the advantages of this concept for spectroscopy of light distributions that are hard to focus onto the entrance slit of a conventional spectrometer, namely large light emitting areas and moving point-like light sources. The excellent spectral performance of the system is demonstrated for both light input geometries.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Damean, S. K. Sia, V. Linder, M. Narovlyansky, and G. M. Whitesides, "Space and time-resolved spectrophotometry in Microsystems," PNAS 102, 10035-10039 (2005).
    [CrossRef] [PubMed]
  2. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, "Planar double-grating microspectrometer," Opt. Express 15, 3581 (2007).
    [CrossRef] [PubMed]
  3. P. Kiesel, O. Schmidt, S. Mohta, S. Malzer, and N. M. Johnson, "Compact, low-cost, and high resolution interrogation unit for optical sensors," Appl. Phys. Lett.  89, 201113-1 - 201113-3 (2006).
    [CrossRef]
  4. N. M. Johnson, O. Schmidt, and S. M. Chokshi, "Chip-Size Spectrometers" (Palo Alto Research Center Incorporated, 2006). http://www.parc.com/research/projects/opticaldetectors/spectrometers.html.
  5. F. W. Kavanagh, "Spectral wedge interference filter combined with purifying filters," United States Patent 2,708,389 (1955).
  6. N. Gat, "Spectrometer apparatus," United States Patent 5,166,755 (1992).
  7. J. A. Wahl, J. S. Van Delden, and S. Tiwari, "Multiple-fluorophore-specie detection with a tapered fabry-perot fluorescence spectrometer," Appl. Opt. 44, 5190-5197 (2005).
    [CrossRef] [PubMed]
  8. J. T. Olesberg, C. Cao, J. R. Yager, J. P. Prineas, C. Coretsopoulos, M. A. Arnold, L. J. Olafsen, and M. Santilli, "Optical microsensor for continuous glucose measurements in interstitial fluid," SPIE Proc. 6094, 609403-1 - 609403-10 (2006).
  9. O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, "Fluorescence Spectrometer-on-a-fluidic-chip," Lab Chip 7, 626-629 (2007).
    [CrossRef] [PubMed]
  10. O. Schmidt, P. Kiesel, S. Mohta, and N.M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B 86, 593 (2006).
    [CrossRef]

2007 (2)

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, "Fluorescence Spectrometer-on-a-fluidic-chip," Lab Chip 7, 626-629 (2007).
[CrossRef] [PubMed]

S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, "Planar double-grating microspectrometer," Opt. Express 15, 3581 (2007).
[CrossRef] [PubMed]

2006 (1)

O. Schmidt, P. Kiesel, S. Mohta, and N.M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B 86, 593 (2006).
[CrossRef]

2005 (2)

J. A. Wahl, J. S. Van Delden, and S. Tiwari, "Multiple-fluorophore-specie detection with a tapered fabry-perot fluorescence spectrometer," Appl. Opt. 44, 5190-5197 (2005).
[CrossRef] [PubMed]

N. Damean, S. K. Sia, V. Linder, M. Narovlyansky, and G. M. Whitesides, "Space and time-resolved spectrophotometry in Microsystems," PNAS 102, 10035-10039 (2005).
[CrossRef] [PubMed]

Bassler, M.

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, "Fluorescence Spectrometer-on-a-fluidic-chip," Lab Chip 7, 626-629 (2007).
[CrossRef] [PubMed]

Damean, N.

N. Damean, S. K. Sia, V. Linder, M. Narovlyansky, and G. M. Whitesides, "Space and time-resolved spectrophotometry in Microsystems," PNAS 102, 10035-10039 (2005).
[CrossRef] [PubMed]

Emadi, A.

Grabarnik, S.

Johnson, N.

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, "Fluorescence Spectrometer-on-a-fluidic-chip," Lab Chip 7, 626-629 (2007).
[CrossRef] [PubMed]

Johnson, N.M.

O. Schmidt, P. Kiesel, S. Mohta, and N.M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B 86, 593 (2006).
[CrossRef]

Kiesel, P.

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, "Fluorescence Spectrometer-on-a-fluidic-chip," Lab Chip 7, 626-629 (2007).
[CrossRef] [PubMed]

O. Schmidt, P. Kiesel, S. Mohta, and N.M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B 86, 593 (2006).
[CrossRef]

Knollenberg, C.

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, "Fluorescence Spectrometer-on-a-fluidic-chip," Lab Chip 7, 626-629 (2007).
[CrossRef] [PubMed]

Linder, V.

N. Damean, S. K. Sia, V. Linder, M. Narovlyansky, and G. M. Whitesides, "Space and time-resolved spectrophotometry in Microsystems," PNAS 102, 10035-10039 (2005).
[CrossRef] [PubMed]

Loktev, M.

Mohta, S.

O. Schmidt, P. Kiesel, S. Mohta, and N.M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B 86, 593 (2006).
[CrossRef]

Narovlyansky, M.

N. Damean, S. K. Sia, V. Linder, M. Narovlyansky, and G. M. Whitesides, "Space and time-resolved spectrophotometry in Microsystems," PNAS 102, 10035-10039 (2005).
[CrossRef] [PubMed]

Schmidt, O.

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, "Fluorescence Spectrometer-on-a-fluidic-chip," Lab Chip 7, 626-629 (2007).
[CrossRef] [PubMed]

O. Schmidt, P. Kiesel, S. Mohta, and N.M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B 86, 593 (2006).
[CrossRef]

Sia, S. K.

N. Damean, S. K. Sia, V. Linder, M. Narovlyansky, and G. M. Whitesides, "Space and time-resolved spectrophotometry in Microsystems," PNAS 102, 10035-10039 (2005).
[CrossRef] [PubMed]

Sokolova, E.

Tiwari, S.

Van Delden, J. S.

Vdovin, G.

Wahl, J. A.

Whitesides, G. M.

N. Damean, S. K. Sia, V. Linder, M. Narovlyansky, and G. M. Whitesides, "Space and time-resolved spectrophotometry in Microsystems," PNAS 102, 10035-10039 (2005).
[CrossRef] [PubMed]

Wolffenbuttel, R.

Appl. Opt. (1)

Appl. Phys. B (1)

O. Schmidt, P. Kiesel, S. Mohta, and N.M. Johnson, "Resolving pm wavelength shifts in optical sensing," Appl. Phys. B 86, 593 (2006).
[CrossRef]

Lab Chip (1)

O. Schmidt, M. Bassler, P. Kiesel, C. Knollenberg, and N. Johnson, "Fluorescence Spectrometer-on-a-fluidic-chip," Lab Chip 7, 626-629 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

PNAS (1)

N. Damean, S. K. Sia, V. Linder, M. Narovlyansky, and G. M. Whitesides, "Space and time-resolved spectrophotometry in Microsystems," PNAS 102, 10035-10039 (2005).
[CrossRef] [PubMed]

Other (5)

J. T. Olesberg, C. Cao, J. R. Yager, J. P. Prineas, C. Coretsopoulos, M. A. Arnold, L. J. Olafsen, and M. Santilli, "Optical microsensor for continuous glucose measurements in interstitial fluid," SPIE Proc. 6094, 609403-1 - 609403-10 (2006).

P. Kiesel, O. Schmidt, S. Mohta, S. Malzer, and N. M. Johnson, "Compact, low-cost, and high resolution interrogation unit for optical sensors," Appl. Phys. Lett.  89, 201113-1 - 201113-3 (2006).
[CrossRef]

N. M. Johnson, O. Schmidt, and S. M. Chokshi, "Chip-Size Spectrometers" (Palo Alto Research Center Incorporated, 2006). http://www.parc.com/research/projects/opticaldetectors/spectrometers.html.

F. W. Kavanagh, "Spectral wedge interference filter combined with purifying filters," United States Patent 2,708,389 (1955).

N. Gat, "Spectrometer apparatus," United States Patent 5,166,755 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Light input geometries of a grating based spectrometer (a) in comparison to a chip-size spectrometer. The chip-size spectrometer is particularly valuable for (b) large area light sources and (c) moving point-sources

Fig. 2:
Fig. 2:

(a) Calibration factors for wavelength dependency of LVF and camera as well as correction for inhomogeneous illumination. Inset: Camera snapshot without LVF (reference). (b) Snapshot and intensity profile with LVF. The calibrated intensity profile of light distribution behind the camera yields spectrum of incident light (white LED). The spectrum is in perfect agreement with measured data from a grating based spectrometer.

Fig. 3.
Fig. 3.

(a) Sequentially recorded intensity profiles of a focused and moving LED (see Fig. 1(c)). The peak position of each curve is correlated with a spectral region that is defined by the LVF’s transmission properties. The area below the curve quantifies the intensity of the corresponding spectral component. (b) Combining the spectral band and intensity information of each profile results in the spectrum of the LED. The spectrum of the moving LED is compared to the spectrum of the static experiment (before calibration).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = I raw ( λ ) C cam ( λ ) · C LVE ( λ ) · I in ( λ )

Metrics