Abstract

In this paper we propose and experimentally demonstrate a tunable laser structure cascading a semiconductor optical amplifier (SOA) that generates broadband amplified spontaneous emission and a reflective Opto-VLSI processor that dynamically reflects arbitrarily wavelengths and injects them back into the SOA, thus synthesising an output signal of variable wavelength. The wavelength tunablility is performed using digital phase holograms uploaded on the Opto-VLSI processor. Experimental results demonstrate a tuning range from 1524nm to 1534nm, and show that the proposed tunable laser structure has a stable performance.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, "Tunable solid-state lasers," IEEE Proc. 80, 348 - 364 (1992).
    [CrossRef]
  2. V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
    [CrossRef]
  3. D. Zuo, Y. Oki, and M. Maeda, "Numerical simulation of a pulsed laser pumped distributed-feedback waveguided dye laser by coupled-wave theory," IEEE J. Quantum Electronics,  39, 673 - 680 (2003).
    [CrossRef]
  4. H. Roskos, S. Optiz, A. Seilmeier, and W. Kaiser, "Operation of an infrared dye laser synchronously pumped by a mode-locked CW Nd:YAG laser," IEEE J. Quantum Electron. 22, 697 - 703 (1986).
    [CrossRef]
  5. W. Wang and M. Ohtsu, "Generation of frequency -tunable light and frequency reference grids using Diode Lasers for One-Petahertz Optical Frequency Sweep Generator," IEEE J. Quantum Electron. 31, 456-467 (1995).
    [CrossRef]
  6. K. Takada and H. Yamada, "Rapidly-tunable narrowband light source with symmetrical crossing configuration for low coherence reflectometry," Electron. Lett. 31, 63-64 (1995).
    [CrossRef]
  7. K. Takada, H. Yamada, and S. Mitachi, "Tunable Narrow-Band Light Source using Two Optical Circulators," IEEE Photon. Technol. Lett.  9, 91-93 (1997).
  8. T. Wolf, H. Westermeier, and M.-C. Amann, "Continuously tunable metal-clad ridge-waveguide distributed feedback laser diode [InGaAsP-InP],"Electron. Lett. 26,  1845 - 1846, (1990).
    [CrossRef]
  9. L. Talaverano, S. Abad, S. Jarabo, and M. Lopez-Amo, "Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability," J. Lightwave Technol. 19, 553-558 (2001).
    [CrossRef]
  10. J. Yang, S. C. Tjin, and N. Q. Ngo, "Multiwavelength tunable fibre ring laser based on sampled chirp fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1026-1028 (2004).
    [CrossRef]
  11. M. J. O’Mahony, "Semiconductor laser optical amplifiers for use in future fiber systems," J. Lightwave Technol. 6, 531-544 (1988).
    [CrossRef]
  12. M. Aljada, K. E. Alameh, and K. Al-Begain, "Opto-VLSI-based correlator architecture for multi-wavelength optical header recognition," J. Lightwave Technol. 24, 2779-2785 (2006).
    [CrossRef]
  13. M. Aljada, K. E. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors," Opt. Express,  14,6823-6836 (2006).
    [CrossRef] [PubMed]

2006 (2)

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

M. Aljada, K. E. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors," Opt. Express,  14,6823-6836 (2006).
[CrossRef] [PubMed]

2004 (1)

J. Yang, S. C. Tjin, and N. Q. Ngo, "Multiwavelength tunable fibre ring laser based on sampled chirp fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1026-1028 (2004).
[CrossRef]

2003 (1)

D. Zuo, Y. Oki, and M. Maeda, "Numerical simulation of a pulsed laser pumped distributed-feedback waveguided dye laser by coupled-wave theory," IEEE J. Quantum Electronics,  39, 673 - 680 (2003).
[CrossRef]

2001 (1)

1997 (1)

K. Takada, H. Yamada, and S. Mitachi, "Tunable Narrow-Band Light Source using Two Optical Circulators," IEEE Photon. Technol. Lett.  9, 91-93 (1997).

1995 (2)

W. Wang and M. Ohtsu, "Generation of frequency -tunable light and frequency reference grids using Diode Lasers for One-Petahertz Optical Frequency Sweep Generator," IEEE J. Quantum Electron. 31, 456-467 (1995).
[CrossRef]

K. Takada and H. Yamada, "Rapidly-tunable narrowband light source with symmetrical crossing configuration for low coherence reflectometry," Electron. Lett. 31, 63-64 (1995).
[CrossRef]

1992 (1)

P. F. Moulton, "Tunable solid-state lasers," IEEE Proc. 80, 348 - 364 (1992).
[CrossRef]

1988 (1)

M. J. O’Mahony, "Semiconductor laser optical amplifiers for use in future fiber systems," J. Lightwave Technol. 6, 531-544 (1988).
[CrossRef]

1986 (1)

H. Roskos, S. Optiz, A. Seilmeier, and W. Kaiser, "Operation of an infrared dye laser synchronously pumped by a mode-locked CW Nd:YAG laser," IEEE J. Quantum Electron. 22, 697 - 703 (1986).
[CrossRef]

Abad, S.

Akimov, V. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Alameh, K. E.

Aljada, M.

Badikov, D. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Chung, I.-S.

Fedorov, V. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Frolov, M. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Gallian, A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Jarabo, S.

Kaiser, W.

H. Roskos, S. Optiz, A. Seilmeier, and W. Kaiser, "Operation of an infrared dye laser synchronously pumped by a mode-locked CW Nd:YAG laser," IEEE J. Quantum Electron. 22, 697 - 703 (1986).
[CrossRef]

Korostelin, Y. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Kozlovsky, V. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Landman, A. I.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Lee, Y.-T.

Lopez-Amo, M.

Maeda, M.

D. Zuo, Y. Oki, and M. Maeda, "Numerical simulation of a pulsed laser pumped distributed-feedback waveguided dye laser by coupled-wave theory," IEEE J. Quantum Electronics,  39, 673 - 680 (2003).
[CrossRef]

Mirov, S. B.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Mitachi, S.

K. Takada, H. Yamada, and S. Mitachi, "Tunable Narrow-Band Light Source using Two Optical Circulators," IEEE Photon. Technol. Lett.  9, 91-93 (1997).

Moulton, P. F.

P. F. Moulton, "Tunable solid-state lasers," IEEE Proc. 80, 348 - 364 (1992).
[CrossRef]

Ngo, N. Q.

J. Yang, S. C. Tjin, and N. Q. Ngo, "Multiwavelength tunable fibre ring laser based on sampled chirp fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1026-1028 (2004).
[CrossRef]

O’Mahony, M. J.

M. J. O’Mahony, "Semiconductor laser optical amplifiers for use in future fiber systems," J. Lightwave Technol. 6, 531-544 (1988).
[CrossRef]

Ohtsu, M.

W. Wang and M. Ohtsu, "Generation of frequency -tunable light and frequency reference grids using Diode Lasers for One-Petahertz Optical Frequency Sweep Generator," IEEE J. Quantum Electron. 31, 456-467 (1995).
[CrossRef]

Oki, Y.

D. Zuo, Y. Oki, and M. Maeda, "Numerical simulation of a pulsed laser pumped distributed-feedback waveguided dye laser by coupled-wave theory," IEEE J. Quantum Electronics,  39, 673 - 680 (2003).
[CrossRef]

Optiz, S.

H. Roskos, S. Optiz, A. Seilmeier, and W. Kaiser, "Operation of an infrared dye laser synchronously pumped by a mode-locked CW Nd:YAG laser," IEEE J. Quantum Electron. 22, 697 - 703 (1986).
[CrossRef]

Podmar'kov, Y. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Roskos, H.

H. Roskos, S. Optiz, A. Seilmeier, and W. Kaiser, "Operation of an infrared dye laser synchronously pumped by a mode-locked CW Nd:YAG laser," IEEE J. Quantum Electron. 22, 697 - 703 (1986).
[CrossRef]

Seilmeier, A.

H. Roskos, S. Optiz, A. Seilmeier, and W. Kaiser, "Operation of an infrared dye laser synchronously pumped by a mode-locked CW Nd:YAG laser," IEEE J. Quantum Electron. 22, 697 - 703 (1986).
[CrossRef]

Takada, K.

K. Takada, H. Yamada, and S. Mitachi, "Tunable Narrow-Band Light Source using Two Optical Circulators," IEEE Photon. Technol. Lett.  9, 91-93 (1997).

K. Takada and H. Yamada, "Rapidly-tunable narrowband light source with symmetrical crossing configuration for low coherence reflectometry," Electron. Lett. 31, 63-64 (1995).
[CrossRef]

Talaverano, L.

Tjin, S. C.

J. Yang, S. C. Tjin, and N. Q. Ngo, "Multiwavelength tunable fibre ring laser based on sampled chirp fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1026-1028 (2004).
[CrossRef]

Voronov, A. A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

Wang, W.

W. Wang and M. Ohtsu, "Generation of frequency -tunable light and frequency reference grids using Diode Lasers for One-Petahertz Optical Frequency Sweep Generator," IEEE J. Quantum Electron. 31, 456-467 (1995).
[CrossRef]

Yamada, H.

K. Takada, H. Yamada, and S. Mitachi, "Tunable Narrow-Band Light Source using Two Optical Circulators," IEEE Photon. Technol. Lett.  9, 91-93 (1997).

K. Takada and H. Yamada, "Rapidly-tunable narrowband light source with symmetrical crossing configuration for low coherence reflectometry," Electron. Lett. 31, 63-64 (1995).
[CrossRef]

Yang, J.

J. Yang, S. C. Tjin, and N. Q. Ngo, "Multiwavelength tunable fibre ring laser based on sampled chirp fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1026-1028 (2004).
[CrossRef]

Zuo, D.

D. Zuo, Y. Oki, and M. Maeda, "Numerical simulation of a pulsed laser pumped distributed-feedback waveguided dye laser by coupled-wave theory," IEEE J. Quantum Electronics,  39, 673 - 680 (2003).
[CrossRef]

Electron. Lett. (1)

K. Takada and H. Yamada, "Rapidly-tunable narrowband light source with symmetrical crossing configuration for low coherence reflectometry," Electron. Lett. 31, 63-64 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Roskos, S. Optiz, A. Seilmeier, and W. Kaiser, "Operation of an infrared dye laser synchronously pumped by a mode-locked CW Nd:YAG laser," IEEE J. Quantum Electron. 22, 697 - 703 (1986).
[CrossRef]

W. Wang and M. Ohtsu, "Generation of frequency -tunable light and frequency reference grids using Diode Lasers for One-Petahertz Optical Frequency Sweep Generator," IEEE J. Quantum Electron. 31, 456-467 (1995).
[CrossRef]

IEEE J. Quantum Electronics (2)

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar'kov, V. A. Akimov, and A. A. Voronov, "3.77-5.05-/spl mu/m tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures," IEEE J. Quantum Electronics 42, 907 - 917 (2006).
[CrossRef]

D. Zuo, Y. Oki, and M. Maeda, "Numerical simulation of a pulsed laser pumped distributed-feedback waveguided dye laser by coupled-wave theory," IEEE J. Quantum Electronics,  39, 673 - 680 (2003).
[CrossRef]

IEEE Photon. Technol. Lett (1)

K. Takada, H. Yamada, and S. Mitachi, "Tunable Narrow-Band Light Source using Two Optical Circulators," IEEE Photon. Technol. Lett.  9, 91-93 (1997).

IEEE Photon. Technol. Lett. (1)

J. Yang, S. C. Tjin, and N. Q. Ngo, "Multiwavelength tunable fibre ring laser based on sampled chirp fiber Bragg grating," IEEE Photon. Technol. Lett. 16, 1026-1028 (2004).
[CrossRef]

IEEE Proc. (1)

P. F. Moulton, "Tunable solid-state lasers," IEEE Proc. 80, 348 - 364 (1992).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (2)

M. Aljada, K. E. Alameh, and K. Al-Begain, "Opto-VLSI-based correlator architecture for multi-wavelength optical header recognition," J. Lightwave Technol. 24, 2779-2785 (2006).
[CrossRef]

T. Wolf, H. Westermeier, and M.-C. Amann, "Continuously tunable metal-clad ridge-waveguide distributed feedback laser diode [InGaAsP-InP],"Electron. Lett. 26,  1845 - 1846, (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Opto-VLSI processor and LC cell structure design.(b) Phase level versus pixel number for blazed grating synthesis, (c) corresponding steering phase holograms of the various pixel blocks, and (d) principle of beam steering using an Opto-VLSI processor.

Fig. 2.
Fig. 2.

Proposed tunable laser structure.

Fig. 3.
Fig. 3.

Photograph of the experimental setup used to demonstrate the principle of the tunable laser structure.

Fig. 4.
Fig. 4.

ASE spectrum generated by the SOA. Driving current=400 mA.

Fig. 5.
Fig. 5.

Digital phase hologram loaded onto the Opto-VLSI processor and measured SOA output spectrum for generating an output wavelength at (a) 1524.8nm, (b) 1527.1nm and (c) 1532.5nm.

Fig. 6.
Fig. 6.

Measured output spectrum, demonstrating single-wavelength tuning through hologram optimisation.

Metrics