Abstract

In this work, the spectral characteristics of non-uniform symmetrically ring shaped coatings deposited on long-period fiber gratings (LPFGs) have been theoretically and experimentally investigated. To optimize the structure performances, the device was designed with a simulation tool based on vectorial analysis of modes in a multilayer cylindrical waveguide and coupled mode theory. Electrostatic self-assembling technique was selected to deposit with fine control uniform azimuthally symmetric coatings on the cladding of the LPFG. UV laser micromachining operating at 193nm was used to selectively remove the coating with high spatial resolution and with azimuthal symmetry. By locally and selectively removing portions of the overlay surrounding the LPFG from the middle of the grating, strong modifications of its spectral characteristics were observed. Phase-shift effects and multiple interference fringes have been observed for all the attenuation bands, strongly depending on the length of the uncoated region and the overlay features (thickness and optical properties). This provides a valid technological platform for the development of advanced photonic devices for sensing and telecommunication applications.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan and J. E. Spie, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
    [CrossRef]
  3. J. R. Qiang and H. E. Chen, "Gain flattening fibre filters using phase shifted long period fibre grating," Electron. Lett. 34, 1132-1133 (1998).
    [CrossRef]
  4. B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark and A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
    [CrossRef] [PubMed]
  5. K. W. Chung and S. Yin, "Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling," Opt. Lett. 29, 812-814 (2004).
    [CrossRef] [PubMed]
  6. M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
    [CrossRef]
  7. X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," IEEE Photon. Technol. Lett. 16, 1352-1354 (2004).
    [CrossRef]
  8. T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
    [CrossRef]
  9. L. Zhang, Y. Liu, L. Everall, J. A. R. Williams and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
    [CrossRef]
  10. B. H. Lee and J. Nishii, "Bending sensitivity in-series long-period fiber gratings," Opt. Lett. 23, 1624-1626 (1998).
    [CrossRef]
  11. T. Allsop, R. Reeves, D. J. Webb, I. Bennion and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002).
    [CrossRef]
  12. Jin-Fei Ding, A. P. Zhang, Li-Yang Shao, Jin-Hua Yan, and Sailing He, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett. 17, 1247-1249 (2005).
    [CrossRef]
  13. A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, "Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature," IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
    [CrossRef]
  14. I. Del Villar, M. Achaerandio, F. J. Arregui and I. R. Matias, "Generation of selective fringes with cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1412 (2006).
    [CrossRef]
  15. R. Slavik, "Extremely deep long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).
    [CrossRef]
  16. N. D. Rees, S. W. James, R. P. Tatam and G. J. Ashwell, "Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays," Opt. Lett. 27, 686-688 (2002).
    [CrossRef]
  17. I. Del Villar, M. Achaerandio, I. R. Matias and F. J. Arregui, "Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings," Opt. Lett. 30, 720-722 (2005).
    [CrossRef] [PubMed]
  18. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo and M. Giordano, "Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity," Opt. Lett. 30, 2536-2538 (2005).
    [CrossRef] [PubMed]
  19. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano and G. Guerra, "High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water," Appl. Phys. Lett. 87, 234105 (2005).
    [CrossRef]
  20. Z. Y. Wang, J. R. Heflin, R. H. Stolen, S. Ramachandran, "Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings," Opt. Express 13, 2808-2813 (2005).
    [CrossRef] [PubMed]
  21. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, "Mode transition in high refractive index coated long period gratings," Opt. Express 14, 19-34 (2006).
    [CrossRef] [PubMed]
  22. I. Del Villar, I. R. Matias and F. J. Arregui, "Deposition of coatings on long-period fiber gratings: tunnel effect analogy," Opt. Quantum Electron. 38, 655-665 (2006).
    [CrossRef]
  23. D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 21, 324-325 (2006).
    [CrossRef]
  24. Q. Chen, J. Lee, M. R. Lin, Y. Wang, S. S. Yin, Q. M. Zhang and K. A. Reichard "Investigation of tuning characteristics of electrically tunable long-period gratings with a precise four-layer model," J. Lightwave Technol. 24, 2954-2962 (2006).
    [CrossRef]
  25. S. W. James, I. Ishaq, G. J. Ashwell and R. P. Tatam, "Cascaded long-period gratings with nanostructured coatings," Opt. Lett. 30, 2197-2199 (2005).
    [CrossRef] [PubMed]
  26. E. Anemogiannis, E. N. Glytsis and T. K. Gaylord, "Transmission characteristics of long- period fiber gratings having arbitrary azimutal/radial refractive index variation," J. Lightwave Technol. 21, 218-227 (2003).
    [CrossRef]
  27. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  28. G. W. Chern and L. A. Wang, "Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings," J. Opt. Soc. Am. A 16, 2675-2689 (1999).
    [CrossRef]
  29. G. Decher, "Fuzzy Nanoassemblies: toward layered polymeric multicomposites," Science 277, 1232-1237, (1997).
    [CrossRef]
  30. F. J. Arregui, I. Latasa, I. R. Matías and R. O. Claus, "An optical fiber pH sensor based on the electrostatic self-assembly method," Proc. of the IEEE Sensors 1, 107-110 (2003).
  31. I. Del Villar, I. R. Matias, F. J. Arregui and M. Achaerandio, "Nanodeposition of materials with complex refractive index in long-period fiber gratings," J. Lightwave Technol. 23, 4192-4199 (2005).
    [CrossRef]
  32. K. W. Chung and S. Yin, "Design of a phase-shifted long-period grating using the partial-etching technique," Microwave Opt. Technol. Lett. 45, 18-21 (2005).
    [CrossRef]
  33. Y. Liu, J. A. R. Williams, L. Zhang and I. Bennion, "Phase shifted and cascaded long-period fiber gratings," Opt. Commun. 164, 27-31 (1999).
    [CrossRef]
  34. S. Khaliq, S. W. James and R. P. Tatam "Fiber-optic liquid-level sensor using a long-period grating," Opt. Lett. 26, 1224-1226 (2001)
    [CrossRef]
  35. I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1469 (1997).
    [CrossRef]

2006 (6)

I. Del Villar, M. Achaerandio, F. J. Arregui and I. R. Matias, "Generation of selective fringes with cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1412 (2006).
[CrossRef]

R. Slavik, "Extremely deep long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).
[CrossRef]

I. Del Villar, I. R. Matias and F. J. Arregui, "Deposition of coatings on long-period fiber gratings: tunnel effect analogy," Opt. Quantum Electron. 38, 655-665 (2006).
[CrossRef]

D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 21, 324-325 (2006).
[CrossRef]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano, "Mode transition in high refractive index coated long period gratings," Opt. Express 14, 19-34 (2006).
[CrossRef] [PubMed]

Q. Chen, J. Lee, M. R. Lin, Y. Wang, S. S. Yin, Q. M. Zhang and K. A. Reichard "Investigation of tuning characteristics of electrically tunable long-period gratings with a precise four-layer model," J. Lightwave Technol. 24, 2954-2962 (2006).
[CrossRef]

2005 (10)

I. Del Villar, I. R. Matias, F. J. Arregui and M. Achaerandio, "Nanodeposition of materials with complex refractive index in long-period fiber gratings," J. Lightwave Technol. 23, 4192-4199 (2005).
[CrossRef]

I. Del Villar, M. Achaerandio, I. R. Matias and F. J. Arregui, "Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings," Opt. Lett. 30, 720-722 (2005).
[CrossRef] [PubMed]

Z. Y. Wang, J. R. Heflin, R. H. Stolen, S. Ramachandran, "Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings," Opt. Express 13, 2808-2813 (2005).
[CrossRef] [PubMed]

S. W. James, I. Ishaq, G. J. Ashwell and R. P. Tatam, "Cascaded long-period gratings with nanostructured coatings," Opt. Lett. 30, 2197-2199 (2005).
[CrossRef] [PubMed]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo and M. Giordano, "Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity," Opt. Lett. 30, 2536-2538 (2005).
[CrossRef] [PubMed]

K. W. Chung and S. Yin, "Design of a phase-shifted long-period grating using the partial-etching technique," Microwave Opt. Technol. Lett. 45, 18-21 (2005).
[CrossRef]

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano and G. Guerra, "High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water," Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

Jin-Fei Ding, A. P. Zhang, Li-Yang Shao, Jin-Hua Yan, and Sailing He, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett. 17, 1247-1249 (2005).
[CrossRef]

A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, "Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature," IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
[CrossRef]

T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
[CrossRef]

2004 (2)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," IEEE Photon. Technol. Lett. 16, 1352-1354 (2004).
[CrossRef]

K. W. Chung and S. Yin, "Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling," Opt. Lett. 29, 812-814 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (3)

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
[CrossRef]

T. Allsop, R. Reeves, D. J. Webb, I. Bennion and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam and G. J. Ashwell, "Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays," Opt. Lett. 27, 686-688 (2002).
[CrossRef]

2001 (1)

1999 (3)

Y. Liu, J. A. R. Williams, L. Zhang and I. Bennion, "Phase shifted and cascaded long-period fiber gratings," Opt. Commun. 164, 27-31 (1999).
[CrossRef]

G. W. Chern and L. A. Wang, "Transfer-matrix method based on perturbation expansion for periodic and quasi-periodic binary long-period gratings," J. Opt. Soc. Am. A 16, 2675-2689 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

1998 (2)

J. R. Qiang and H. E. Chen, "Gain flattening fibre filters using phase shifted long period fibre grating," Electron. Lett. 34, 1132-1133 (1998).
[CrossRef]

B. H. Lee and J. Nishii, "Bending sensitivity in-series long-period fiber gratings," Opt. Lett. 23, 1624-1626 (1998).
[CrossRef]

1997 (4)

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark and A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1469 (1997).
[CrossRef]

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

G. Decher, "Fuzzy Nanoassemblies: toward layered polymeric multicomposites," Science 277, 1232-1237, (1997).
[CrossRef]

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan and J. E. Spie, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Achaerandio, M.

Allsop, T.

T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
[CrossRef]

T. Allsop, R. Reeves, D. J. Webb, I. Bennion and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

Anemogiannis, E.

Arregui, F. J.

I. Del Villar, I. R. Matias and F. J. Arregui, "Deposition of coatings on long-period fiber gratings: tunnel effect analogy," Opt. Quantum Electron. 38, 655-665 (2006).
[CrossRef]

I. Del Villar, M. Achaerandio, F. J. Arregui and I. R. Matias, "Generation of selective fringes with cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1412 (2006).
[CrossRef]

I. Del Villar, I. R. Matias, F. J. Arregui and M. Achaerandio, "Nanodeposition of materials with complex refractive index in long-period fiber gratings," J. Lightwave Technol. 23, 4192-4199 (2005).
[CrossRef]

I. Del Villar, M. Achaerandio, I. R. Matias and F. J. Arregui, "Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings," Opt. Lett. 30, 720-722 (2005).
[CrossRef] [PubMed]

Ashwell, G. J.

Bathia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan and J. E. Spie, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Bennion, I.

T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
[CrossRef]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," IEEE Photon. Technol. Lett. 16, 1352-1354 (2004).
[CrossRef]

T. Allsop, R. Reeves, D. J. Webb, I. Bennion and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

Y. Liu, J. A. R. Williams, L. Zhang and I. Bennion, "Phase shifted and cascaded long-period fiber gratings," Opt. Commun. 164, 27-31 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Campopiano, S.

Chen, H. E.

J. R. Qiang and H. E. Chen, "Gain flattening fibre filters using phase shifted long period fibre grating," Electron. Lett. 34, 1132-1133 (1998).
[CrossRef]

Chen, Q.

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," IEEE Photon. Technol. Lett. 16, 1352-1354 (2004).
[CrossRef]

Chern, G. W.

Chiang, K. S.

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Chung, K. W.

K. W. Chung and S. Yin, "Design of a phase-shifted long-period grating using the partial-etching technique," Microwave Opt. Technol. Lett. 45, 18-21 (2005).
[CrossRef]

K. W. Chung and S. Yin, "Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling," Opt. Lett. 29, 812-814 (2004).
[CrossRef] [PubMed]

Contessa, L.

Cooper, K. L.

D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 21, 324-325 (2006).
[CrossRef]

Cusano, A.

Cutolo, A.

Decher, G.

G. Decher, "Fuzzy Nanoassemblies: toward layered polymeric multicomposites," Science 277, 1232-1237, (1997).
[CrossRef]

Del Villar, I.

I. Del Villar, I. R. Matias and F. J. Arregui, "Deposition of coatings on long-period fiber gratings: tunnel effect analogy," Opt. Quantum Electron. 38, 655-665 (2006).
[CrossRef]

I. Del Villar, M. Achaerandio, F. J. Arregui and I. R. Matias, "Generation of selective fringes with cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1412 (2006).
[CrossRef]

I. Del Villar, I. R. Matias, F. J. Arregui and M. Achaerandio, "Nanodeposition of materials with complex refractive index in long-period fiber gratings," J. Lightwave Technol. 23, 4192-4199 (2005).
[CrossRef]

I. Del Villar, M. Achaerandio, I. R. Matias and F. J. Arregui, "Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings," Opt. Lett. 30, 720-722 (2005).
[CrossRef] [PubMed]

Dubov, M.

T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
[CrossRef]

Eggleton, B. J.

Erdogan, T.

T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan and J. E. Spie, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Everall, L.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Floreani, F.

T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
[CrossRef]

Gaylord, T. K.

Giordano, M.

Glytsis, E. N.

Guerra, G.

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano and G. Guerra, "High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water," Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

Haller, F.

I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1469 (1997).
[CrossRef]

Heflin, J. R.

Iadicicco, A.

Ishaq, I.

James, S. W.

Jin-Fei Ding,

Jin-Fei Ding, A. P. Zhang, Li-Yang Shao, Jin-Hua Yan, and Sailing He, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett. 17, 1247-1249 (2005).
[CrossRef]

Judkins, J. B.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark and A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan and J. E. Spie, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Khaliq, S.

Khrushchev, I.

T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
[CrossRef]

Kim, D. W.

D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 21, 324-325 (2006).
[CrossRef]

Lee, B. H.

Lee, J.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan and J. E. Spie, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Lin, M. R.

Liu, Y.

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Y. Liu, J. A. R. Williams, L. Zhang and I. Bennion, "Phase shifted and cascaded long-period fiber gratings," Opt. Commun. 164, 27-31 (1999).
[CrossRef]

Martinez, A.

T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
[CrossRef]

Matias, I. R.

I. Del Villar, M. Achaerandio, F. J. Arregui and I. R. Matias, "Generation of selective fringes with cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1412 (2006).
[CrossRef]

I. Del Villar, I. R. Matias and F. J. Arregui, "Deposition of coatings on long-period fiber gratings: tunnel effect analogy," Opt. Quantum Electron. 38, 655-665 (2006).
[CrossRef]

I. Del Villar, I. R. Matias, F. J. Arregui and M. Achaerandio, "Nanodeposition of materials with complex refractive index in long-period fiber gratings," J. Lightwave Technol. 23, 4192-4199 (2005).
[CrossRef]

I. Del Villar, M. Achaerandio, I. R. Matias and F. J. Arregui, "Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings," Opt. Lett. 30, 720-722 (2005).
[CrossRef] [PubMed]

Neal, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

Ng, M. N.

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Nishii, J.

Pilla, P.

Qiang, J. R.

J. R. Qiang and H. E. Chen, "Gain flattening fibre filters using phase shifted long period fibre grating," Electron. Lett. 34, 1132-1133 (1998).
[CrossRef]

Ramachandran, S.

Rees, N. D.

Reeves, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

Reichard, K. A.

Riant, I.

I. Riant and F. Haller, "Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging," J. Lightwave Technol. 15, 1464-1469 (1997).
[CrossRef]

Slavik, R.

R. Slavik, "Extremely deep long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).
[CrossRef]

Slusher, R. E.

Spie, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan and J. E. Spie, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Stark, J. B.

Stolen, R. H.

Tatam, R. P.

Vengsarkar, A. M.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark and A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bathia, T. Erdogan and J. E. Spie, "Long-period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Wang, A.

D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 21, 324-325 (2006).
[CrossRef]

Wang, L. A.

Wang, Y.

Wang, Z. Y.

Webb, D. J.

T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
[CrossRef]

T. Allsop, R. Reeves, D. J. Webb, I. Bennion and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

Williams, J. A. R.

Y. Liu, J. A. R. Williams, L. Zhang and I. Bennion, "Phase shifted and cascaded long-period fiber gratings," Opt. Commun. 164, 27-31 (1999).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Yin, S.

K. W. Chung and S. Yin, "Design of a phase-shifted long-period grating using the partial-etching technique," Microwave Opt. Technol. Lett. 45, 18-21 (2005).
[CrossRef]

K. W. Chung and S. Yin, "Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling," Opt. Lett. 29, 812-814 (2004).
[CrossRef] [PubMed]

Yin, S. S.

Zhang, A. P.

A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, "Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature," IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
[CrossRef]

Zhang, L.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," IEEE Photon. Technol. Lett. 16, 1352-1354 (2004).
[CrossRef]

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

Y. Liu, J. A. R. Williams, L. Zhang and I. Bennion, "Phase shifted and cascaded long-period fiber gratings," Opt. Commun. 164, 27-31 (1999).
[CrossRef]

Zhang, Q. M.

Zhang, Y.

D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 21, 324-325 (2006).
[CrossRef]

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," IEEE Photon. Technol. Lett. 16, 1352-1354 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano and G. Guerra, "High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water," Appl. Phys. Lett. 87, 234105 (2005).
[CrossRef]

Electron. Lett. (3)

T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, "Long period grating directional bend sensor based on asymmetric index modification of cladding," Electron. Lett. 41, 59-60 (2005).
[CrossRef]

D. W. Kim, Y. Zhang, K. L. Cooper and A. Wang, "Fibre-optic interferometric immuno-sensor using long period grating," Electron. Lett. 21, 324-325 (2006).
[CrossRef]

J. R. Qiang and H. E. Chen, "Gain flattening fibre filters using phase shifted long period fibre grating," Electron. Lett. 34, 1132-1133 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Zhang, Y. Liu, L. Everall, J. A. R. Williams and I. Bennion, "Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors," IEEE J. Sel. Top. Quantum Electron. 5, 1373-1378 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

Jin-Fei Ding, A. P. Zhang, Li-Yang Shao, Jin-Hua Yan, and Sailing He, "Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor," IEEE Photon. Technol. Lett. 17, 1247-1249 (2005).
[CrossRef]

A. P. Zhang, Li-Yang Shao, Jin-Fei Ding, and Sailing He, "Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature," IEEE Photon. Technol. Lett. 17, 2397-2399 (2005).
[CrossRef]

I. Del Villar, M. Achaerandio, F. J. Arregui and I. R. Matias, "Generation of selective fringes with cascaded long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1412 (2006).
[CrossRef]

R. Slavik, "Extremely deep long-period fiber gratings," IEEE Photon. Technol. Lett. 18, 1705-1707 (2006).
[CrossRef]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, "Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching," IEEE Photon. Technol. Lett. 16, 1352-1354 (2004).
[CrossRef]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and application," Meas. Sci. Technol. 14, R49-R61 (2003).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

K. W. Chung and S. Yin, "Design of a phase-shifted long-period grating using the partial-etching technique," Microwave Opt. Technol. Lett. 45, 18-21 (2005).
[CrossRef]

Opt. Commun. (2)

Y. Liu, J. A. R. Williams, L. Zhang and I. Bennion, "Phase shifted and cascaded long-period fiber gratings," Opt. Commun. 164, 27-31 (1999).
[CrossRef]

M. N. Ng and K. S. Chiang, "Thermal effects on the transmission spectra of long-period fiber gratings," Opt. Commun. 208, 321-327 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

S. W. James, I. Ishaq, G. J. Ashwell and R. P. Tatam, "Cascaded long-period gratings with nanostructured coatings," Opt. Lett. 30, 2197-2199 (2005).
[CrossRef] [PubMed]

A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo and M. Giordano, "Cladding mode reorganization in high-refractive-index-coated long-period gratings: effects on the refractive-index sensitivity," Opt. Lett. 30, 2536-2538 (2005).
[CrossRef] [PubMed]

K. W. Chung and S. Yin, "Analysis of widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling," Opt. Lett. 29, 812-814 (2004).
[CrossRef] [PubMed]

I. Del Villar, M. Achaerandio, I. R. Matias and F. J. Arregui, "Deposition of an Overlay with Electrostactic Self-Assembly Method in Long Period Fiber Gratings," Opt. Lett. 30, 720-722 (2005).
[CrossRef] [PubMed]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, J. B. Stark and A. M. Vengsarkar, "All-optical switching in long period fiber gratings," Opt. Lett. 22, 883-885 (1997).
[CrossRef] [PubMed]

B. H. Lee and J. Nishii, "Bending sensitivity in-series long-period fiber gratings," Opt. Lett. 23, 1624-1626 (1998).
[CrossRef]

S. Khaliq, S. W. James and R. P. Tatam "Fiber-optic liquid-level sensor using a long-period grating," Opt. Lett. 26, 1224-1226 (2001)
[CrossRef]

N. D. Rees, S. W. James, R. P. Tatam and G. J. Ashwell, "Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays," Opt. Lett. 27, 686-688 (2002).
[CrossRef]

Opt. Quantum Electron. (1)

I. Del Villar, I. R. Matias and F. J. Arregui, "Deposition of coatings on long-period fiber gratings: tunnel effect analogy," Opt. Quantum Electron. 38, 655-665 (2006).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Allsop, R. Reeves, D. J. Webb, I. Bennion and R. Neal, "A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer," Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

Science (1)

G. Decher, "Fuzzy Nanoassemblies: toward layered polymeric multicomposites," Science 277, 1232-1237, (1997).
[CrossRef]

Other (1)

F. J. Arregui, I. Latasa, I. R. Matías and R. O. Claus, "An optical fiber pH sensor based on the electrostatic self-assembly method," Proc. of the IEEE Sensors 1, 107-110 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Coated LPFGs: a) uniformly coated; b) coated with a middle stripped region; b) coated with two stripped regions

Fig. 2.
Fig. 2.

Experimental transmission spectra as a function of the grating length of an LPFG

Fig. 3.
Fig. 3.

Transmission spectra for coated LPFGs with different middle stripped regions for a) grating length 13.3 mm; b) grating length 26.7 mm

Fig. 4.
Fig. 4.

Transmission spectra for coated LPFG with two stripped regions. The central point of the stripped regions is located at 6.7 mm from the grating center

Fig. 5.
Fig. 5.

Transmission spectrum of the LPFG before and after the coating deposition

Fig. 6.
Fig. 6.

Excimer laser system with rotating stage equipment

Fig. 7.
Fig. 7.

Image through the laser vision system of coated LPFG: (a) section of the completely coated structure; (b) 200µm stripped coating

Fig. 8.
Fig. 8.

Experimental transmission spectra during the first coating stripping: (a) phase-shift phenomenon in the range 0 - 2π; (b) phase-shift phenomenon in the range 2π - 4π; (c) multiple fringes generation

Fig. 9.
Fig. 9.

Transmission spectrum of the LPFG after the first coating stripping, after the second coating deposition and after the second coating stripping

Fig. 10.
Fig. 10.

Experimental transmission spectra during the second coating stripping. The same stripping lengths of Fig. 8 have been considered

Fig. 11.
Fig. 11.

Grating profile before and after 193 nm laser exposure

Fig. 12.
Fig. 12.

Transmitted power as a function of kiL

Fig. 13.
Fig. 13.

Numerical transmission spectra during the first coating stripping taking into account the laser effects: (a-b) phase shift phenomenon in the range 0 - 4π; (c) multiple fringes generation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β 01 ( λ ) + s 0 ζ 01,01 ( λ ) ( β 0 j ( λ ) + s 0 ζ 0 j , 0 j ( λ ) ) = 2 π N Λ
T i = cos 2 ( k i L )
Φ = 2 π λ · Δ n eff , clad · L strip

Metrics