Abstract

We discuss materials that reveal fundamental intercoupling of light and chirality in creation of complex structures. These materials are based on cholesteric liquid crystals (CLCs) photosensitized by azobenzene nematics. Transformation of the one-dimensional periodic structure of such CLCs into complex spatial patterns takes place on macroscopic scales, over the whole area of the CLC layer, under the influence of low power radiation including LED, ambient illumination, and sunlight. The obtained structures, with their origin in the strain of the CLC layers caused by trans-cis photoisomerization precede a shift in the bandgap position of the CLCs. The effect is observed both in red-shifting as well as blue-shifting CLCs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Barron, "Chirality, Magnetism and Light," Nature 405, 895-896 (2000).
    [CrossRef] [PubMed]
  2. D. Bradley, "A new twist in the tale of nature’s asymmetry," Science 264, 908-910 (1994).
    [CrossRef] [PubMed]
  3. C. B. Stanley, H. Hong, and H. H. Strey, "DNA Cholesteric pitch as a function of density and ionic strength," Biophysical Journal 89, 2552-2557 (2005).
    [CrossRef] [PubMed]
  4. P. G. De Gennes, Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).
  5. L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials (Springer-Verlag, New York, Inc., 1994).
    [CrossRef]
  6. S. A. Pikin, Structural transformations in liquid crystals (Nauka, Moscow, 1981).
  7. H. Hervet, J. Hurault, and F. Rondelez, "Static one-dimensional distortions in cholesteric liquid crystals," Phys. Rev. A8, 3055-3064 (1973).
  8. V. G. Chigrinov, V. V. Belayev, S. V. Belyaev, and M. F. Grebenkin, "Instability of cholesteric liquid crystals in an electric field," Sov. Phys. JETF 50, 994-999 (1979).Q1
  9. N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, "Buckling of a sheared cholesteric liquid crystal," Phys. Rev. A 32, 1134-1143 (1985).
    [CrossRef] [PubMed]
  10. N. A. Clark and R. B. Meyer, "Strain-induced instability of monodomain smectic A and cholesteric liquid crystals," Appl. Phys. Lett. 22, 493-494 (1973).
    [CrossRef]
  11. H. Pleiner and H. R. Brand, "Thermoundulations versus convection instability in cholesteric liquid crystals: A novel type of pattern competition," Phys. Rev. A 32, 3842-3844 (1985).
    [CrossRef] [PubMed]
  12. V. F. Kitaeva and A. S. Zolot’ko, "Square periodic distorsions of the director field in cholesteric liquid crystals," Mol. Cryst. Liq. Cryst. 2, 261-279 (1992).Q2
  13. W. R. Folks, Yu. A. Reznikov, S. N. Yarmolenko, and O. D. Lavrentovich, "Light-induced periodic lattice of defects in smectic A and C liquid crystals: structural and dynamical aspects," Mol. Cryst. Liq. Cryst. 292, 183-197 (1997).Q3
    [CrossRef]
  14. Y. Lansac, M. Glaser, N. Clark, and O. D. Lavrentovich, "Photocontrolled nanophase segregation in a liquid-crystal solvent," Nature 398, 54-57 (1999).
    [CrossRef]
  15. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, "Wide temperature range azobenzene nematic and smectic LC materials," Mol. Cryst. Liq. Cryst. 454, 235-245 (2006).Q4
    [CrossRef]
  16. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, "Optical tuning of the reflection of azobenzene liquid crystal doped cholesterics," Adv. Materials, to be published), available online at. http://dx.doi.org/10.1002/adfm.200600776.
  17. W. Haas, J. Adams, and J. Wysocki, "Interaction between UV radiation and cholesteric liquid crystals,’Mol. Cryst. Liq. Cryst. 7, 371-379 (1969).Q5
    [CrossRef]
  18. E. Sackmann, "Photochemically induced reversible color changes in cholesteric liquid crystals," J. Am. Chem. Soc. 93, 7088-7090 (1971).
    [CrossRef]
  19. V. Vinogradov, A. Khizhniak, L. Kutulya, Yu. Reznikov, and V. Reshetnyak, "Photoinduced change of cholesteric LC-pitch," Mol. Cryst. Liq. Cryst. 192, 273-278 (1990).Q6
  20. K. Shirota, K. Tachibana, and I. Yamaguchi, "Optical control of the pitch in cholesteric liquid crystals," Proc. SPIE 3740, 372-375 (1999).
    [CrossRef]
  21. C. Ruslim and K. Ichimura, "Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants," J. Phys. Chem. B 104, 6529-6535 (2000).
    [CrossRef]
  22. N. Tamaoki, "Cholesteric liquid crystals for colour information technology," Adv. Mat. 13, 1135-1147 (2001).Q7
    [CrossRef]
  23. S. Serak, E. Arikainen, H. Gleeson, V. Grozhik, J.-P. Guillou, and N. Usova, "Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant," Liq. Cryst. 29, 19-26 (2002).Q8
    [CrossRef]
  24. A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, "Light induced effects in cholesteric mixtures with a photosensitive nematic host,".Mol. Cryst. Liq. Cryst. 409, 209-218 (2004).Q9
    [CrossRef]
  25. N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, "Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals," J. Opt. Soc. Am. B. 20, 538-544 (2003).
    [CrossRef]

2006 (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, "Wide temperature range azobenzene nematic and smectic LC materials," Mol. Cryst. Liq. Cryst. 454, 235-245 (2006).Q4
[CrossRef]

2005 (1)

C. B. Stanley, H. Hong, and H. H. Strey, "DNA Cholesteric pitch as a function of density and ionic strength," Biophysical Journal 89, 2552-2557 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, "Light induced effects in cholesteric mixtures with a photosensitive nematic host,".Mol. Cryst. Liq. Cryst. 409, 209-218 (2004).Q9
[CrossRef]

2003 (1)

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, "Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals," J. Opt. Soc. Am. B. 20, 538-544 (2003).
[CrossRef]

2002 (1)

S. Serak, E. Arikainen, H. Gleeson, V. Grozhik, J.-P. Guillou, and N. Usova, "Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant," Liq. Cryst. 29, 19-26 (2002).Q8
[CrossRef]

2001 (1)

N. Tamaoki, "Cholesteric liquid crystals for colour information technology," Adv. Mat. 13, 1135-1147 (2001).Q7
[CrossRef]

2000 (2)

C. Ruslim and K. Ichimura, "Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants," J. Phys. Chem. B 104, 6529-6535 (2000).
[CrossRef]

L. D. Barron, "Chirality, Magnetism and Light," Nature 405, 895-896 (2000).
[CrossRef] [PubMed]

1999 (2)

Y. Lansac, M. Glaser, N. Clark, and O. D. Lavrentovich, "Photocontrolled nanophase segregation in a liquid-crystal solvent," Nature 398, 54-57 (1999).
[CrossRef]

K. Shirota, K. Tachibana, and I. Yamaguchi, "Optical control of the pitch in cholesteric liquid crystals," Proc. SPIE 3740, 372-375 (1999).
[CrossRef]

1997 (1)

W. R. Folks, Yu. A. Reznikov, S. N. Yarmolenko, and O. D. Lavrentovich, "Light-induced periodic lattice of defects in smectic A and C liquid crystals: structural and dynamical aspects," Mol. Cryst. Liq. Cryst. 292, 183-197 (1997).Q3
[CrossRef]

1994 (1)

D. Bradley, "A new twist in the tale of nature’s asymmetry," Science 264, 908-910 (1994).
[CrossRef] [PubMed]

1992 (1)

V. F. Kitaeva and A. S. Zolot’ko, "Square periodic distorsions of the director field in cholesteric liquid crystals," Mol. Cryst. Liq. Cryst. 2, 261-279 (1992).Q2

1990 (1)

V. Vinogradov, A. Khizhniak, L. Kutulya, Yu. Reznikov, and V. Reshetnyak, "Photoinduced change of cholesteric LC-pitch," Mol. Cryst. Liq. Cryst. 192, 273-278 (1990).Q6

1985 (2)

N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, "Buckling of a sheared cholesteric liquid crystal," Phys. Rev. A 32, 1134-1143 (1985).
[CrossRef] [PubMed]

H. Pleiner and H. R. Brand, "Thermoundulations versus convection instability in cholesteric liquid crystals: A novel type of pattern competition," Phys. Rev. A 32, 3842-3844 (1985).
[CrossRef] [PubMed]

1979 (1)

V. G. Chigrinov, V. V. Belayev, S. V. Belyaev, and M. F. Grebenkin, "Instability of cholesteric liquid crystals in an electric field," Sov. Phys. JETF 50, 994-999 (1979).Q1

1973 (2)

N. A. Clark and R. B. Meyer, "Strain-induced instability of monodomain smectic A and cholesteric liquid crystals," Appl. Phys. Lett. 22, 493-494 (1973).
[CrossRef]

H. Hervet, J. Hurault, and F. Rondelez, "Static one-dimensional distortions in cholesteric liquid crystals," Phys. Rev. A8, 3055-3064 (1973).

1971 (1)

E. Sackmann, "Photochemically induced reversible color changes in cholesteric liquid crystals," J. Am. Chem. Soc. 93, 7088-7090 (1971).
[CrossRef]

1969 (1)

W. Haas, J. Adams, and J. Wysocki, "Interaction between UV radiation and cholesteric liquid crystals,’Mol. Cryst. Liq. Cryst. 7, 371-379 (1969).Q5
[CrossRef]

Adams, J.

W. Haas, J. Adams, and J. Wysocki, "Interaction between UV radiation and cholesteric liquid crystals,’Mol. Cryst. Liq. Cryst. 7, 371-379 (1969).Q5
[CrossRef]

Arikainen, E.

S. Serak, E. Arikainen, H. Gleeson, V. Grozhik, J.-P. Guillou, and N. Usova, "Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant," Liq. Cryst. 29, 19-26 (2002).Q8
[CrossRef]

Barberi, R.

N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, "Buckling of a sheared cholesteric liquid crystal," Phys. Rev. A 32, 1134-1143 (1985).
[CrossRef] [PubMed]

Barbero, G.

N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, "Buckling of a sheared cholesteric liquid crystal," Phys. Rev. A 32, 1134-1143 (1985).
[CrossRef] [PubMed]

Barron, L. D.

L. D. Barron, "Chirality, Magnetism and Light," Nature 405, 895-896 (2000).
[CrossRef] [PubMed]

Bartolino, R.

N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, "Buckling of a sheared cholesteric liquid crystal," Phys. Rev. A 32, 1134-1143 (1985).
[CrossRef] [PubMed]

Belayev, V. V.

V. G. Chigrinov, V. V. Belayev, S. V. Belyaev, and M. F. Grebenkin, "Instability of cholesteric liquid crystals in an electric field," Sov. Phys. JETF 50, 994-999 (1979).Q1

Belyaev, S. V.

V. G. Chigrinov, V. V. Belayev, S. V. Belyaev, and M. F. Grebenkin, "Instability of cholesteric liquid crystals in an electric field," Sov. Phys. JETF 50, 994-999 (1979).Q1

Bradley, D.

D. Bradley, "A new twist in the tale of nature’s asymmetry," Science 264, 908-910 (1994).
[CrossRef] [PubMed]

Brand, H. R.

H. Pleiner and H. R. Brand, "Thermoundulations versus convection instability in cholesteric liquid crystals: A novel type of pattern competition," Phys. Rev. A 32, 3842-3844 (1985).
[CrossRef] [PubMed]

Bunning, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, "Wide temperature range azobenzene nematic and smectic LC materials," Mol. Cryst. Liq. Cryst. 454, 235-245 (2006).Q4
[CrossRef]

Chanishvili,

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, "Light induced effects in cholesteric mixtures with a photosensitive nematic host,".Mol. Cryst. Liq. Cryst. 409, 209-218 (2004).Q9
[CrossRef]

Chigrinov, V. G.

V. G. Chigrinov, V. V. Belayev, S. V. Belyaev, and M. F. Grebenkin, "Instability of cholesteric liquid crystals in an electric field," Sov. Phys. JETF 50, 994-999 (1979).Q1

Clark, N.

Y. Lansac, M. Glaser, N. Clark, and O. D. Lavrentovich, "Photocontrolled nanophase segregation in a liquid-crystal solvent," Nature 398, 54-57 (1999).
[CrossRef]

Clark, N. A.

N. A. Clark and R. B. Meyer, "Strain-induced instability of monodomain smectic A and cholesteric liquid crystals," Appl. Phys. Lett. 22, 493-494 (1973).
[CrossRef]

Folks, W. R.

W. R. Folks, Yu. A. Reznikov, S. N. Yarmolenko, and O. D. Lavrentovich, "Light-induced periodic lattice of defects in smectic A and C liquid crystals: structural and dynamical aspects," Mol. Cryst. Liq. Cryst. 292, 183-197 (1997).Q3
[CrossRef]

Glaser, M.

Y. Lansac, M. Glaser, N. Clark, and O. D. Lavrentovich, "Photocontrolled nanophase segregation in a liquid-crystal solvent," Nature 398, 54-57 (1999).
[CrossRef]

Gleeson, H.

S. Serak, E. Arikainen, H. Gleeson, V. Grozhik, J.-P. Guillou, and N. Usova, "Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant," Liq. Cryst. 29, 19-26 (2002).Q8
[CrossRef]

Grebenkin, M. F.

V. G. Chigrinov, V. V. Belayev, S. V. Belyaev, and M. F. Grebenkin, "Instability of cholesteric liquid crystals in an electric field," Sov. Phys. JETF 50, 994-999 (1979).Q1

Grozhik, V.

S. Serak, E. Arikainen, H. Gleeson, V. Grozhik, J.-P. Guillou, and N. Usova, "Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant," Liq. Cryst. 29, 19-26 (2002).Q8
[CrossRef]

Grozhik, V. A.

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, "Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals," J. Opt. Soc. Am. B. 20, 538-544 (2003).
[CrossRef]

Guillou, J.-P.

S. Serak, E. Arikainen, H. Gleeson, V. Grozhik, J.-P. Guillou, and N. Usova, "Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant," Liq. Cryst. 29, 19-26 (2002).Q8
[CrossRef]

Haas, W.

W. Haas, J. Adams, and J. Wysocki, "Interaction between UV radiation and cholesteric liquid crystals,’Mol. Cryst. Liq. Cryst. 7, 371-379 (1969).Q5
[CrossRef]

Hervet, H.

H. Hervet, J. Hurault, and F. Rondelez, "Static one-dimensional distortions in cholesteric liquid crystals," Phys. Rev. A8, 3055-3064 (1973).

Hong, H.

C. B. Stanley, H. Hong, and H. H. Strey, "DNA Cholesteric pitch as a function of density and ionic strength," Biophysical Journal 89, 2552-2557 (2005).
[CrossRef] [PubMed]

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, "Wide temperature range azobenzene nematic and smectic LC materials," Mol. Cryst. Liq. Cryst. 454, 235-245 (2006).Q4
[CrossRef]

Hurault, J.

H. Hervet, J. Hurault, and F. Rondelez, "Static one-dimensional distortions in cholesteric liquid crystals," Phys. Rev. A8, 3055-3064 (1973).

Ichimura, K.

C. Ruslim and K. Ichimura, "Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants," J. Phys. Chem. B 104, 6529-6535 (2000).
[CrossRef]

Khizhniak, A.

V. Vinogradov, A. Khizhniak, L. Kutulya, Yu. Reznikov, and V. Reshetnyak, "Photoinduced change of cholesteric LC-pitch," Mol. Cryst. Liq. Cryst. 192, 273-278 (1990).Q6

Kitaeva, V. F.

V. F. Kitaeva and A. S. Zolot’ko, "Square periodic distorsions of the director field in cholesteric liquid crystals," Mol. Cryst. Liq. Cryst. 2, 261-279 (1992).Q2

Kutulya, L.

V. Vinogradov, A. Khizhniak, L. Kutulya, Yu. Reznikov, and V. Reshetnyak, "Photoinduced change of cholesteric LC-pitch," Mol. Cryst. Liq. Cryst. 192, 273-278 (1990).Q6

Lansac, Y.

Y. Lansac, M. Glaser, N. Clark, and O. D. Lavrentovich, "Photocontrolled nanophase segregation in a liquid-crystal solvent," Nature 398, 54-57 (1999).
[CrossRef]

Lavrentovich, O. D.

Y. Lansac, M. Glaser, N. Clark, and O. D. Lavrentovich, "Photocontrolled nanophase segregation in a liquid-crystal solvent," Nature 398, 54-57 (1999).
[CrossRef]

W. R. Folks, Yu. A. Reznikov, S. N. Yarmolenko, and O. D. Lavrentovich, "Light-induced periodic lattice of defects in smectic A and C liquid crystals: structural and dynamical aspects," Mol. Cryst. Liq. Cryst. 292, 183-197 (1997).Q3
[CrossRef]

Meyer, R. B.

N. A. Clark and R. B. Meyer, "Strain-induced instability of monodomain smectic A and cholesteric liquid crystals," Appl. Phys. Lett. 22, 493-494 (1973).
[CrossRef]

Pleiner, H.

H. Pleiner and H. R. Brand, "Thermoundulations versus convection instability in cholesteric liquid crystals: A novel type of pattern competition," Phys. Rev. A 32, 3842-3844 (1985).
[CrossRef] [PubMed]

Reshetnyak, V.

V. Vinogradov, A. Khizhniak, L. Kutulya, Yu. Reznikov, and V. Reshetnyak, "Photoinduced change of cholesteric LC-pitch," Mol. Cryst. Liq. Cryst. 192, 273-278 (1990).Q6

Reznikov, Yu.

V. Vinogradov, A. Khizhniak, L. Kutulya, Yu. Reznikov, and V. Reshetnyak, "Photoinduced change of cholesteric LC-pitch," Mol. Cryst. Liq. Cryst. 192, 273-278 (1990).Q6

Reznikov, Yu. A.

W. R. Folks, Yu. A. Reznikov, S. N. Yarmolenko, and O. D. Lavrentovich, "Light-induced periodic lattice of defects in smectic A and C liquid crystals: structural and dynamical aspects," Mol. Cryst. Liq. Cryst. 292, 183-197 (1997).Q3
[CrossRef]

Rondelez, F.

H. Hervet, J. Hurault, and F. Rondelez, "Static one-dimensional distortions in cholesteric liquid crystals," Phys. Rev. A8, 3055-3064 (1973).

Ruslim, C.

C. Ruslim and K. Ichimura, "Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants," J. Phys. Chem. B 104, 6529-6535 (2000).
[CrossRef]

Sackmann, E.

E. Sackmann, "Photochemically induced reversible color changes in cholesteric liquid crystals," J. Am. Chem. Soc. 93, 7088-7090 (1971).
[CrossRef]

Scaramuzza, N.

N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, "Buckling of a sheared cholesteric liquid crystal," Phys. Rev. A 32, 1134-1143 (1985).
[CrossRef] [PubMed]

Serak, S.

S. Serak, E. Arikainen, H. Gleeson, V. Grozhik, J.-P. Guillou, and N. Usova, "Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant," Liq. Cryst. 29, 19-26 (2002).Q8
[CrossRef]

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, "Wide temperature range azobenzene nematic and smectic LC materials," Mol. Cryst. Liq. Cryst. 454, 235-245 (2006).Q4
[CrossRef]

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, "Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals," J. Opt. Soc. Am. B. 20, 538-544 (2003).
[CrossRef]

Shirota, K.

K. Shirota, K. Tachibana, and I. Yamaguchi, "Optical control of the pitch in cholesteric liquid crystals," Proc. SPIE 3740, 372-375 (1999).
[CrossRef]

Simoni, F.

N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, "Buckling of a sheared cholesteric liquid crystal," Phys. Rev. A 32, 1134-1143 (1985).
[CrossRef] [PubMed]

Stanley, C. B.

C. B. Stanley, H. Hong, and H. H. Strey, "DNA Cholesteric pitch as a function of density and ionic strength," Biophysical Journal 89, 2552-2557 (2005).
[CrossRef] [PubMed]

Strey, H. H.

C. B. Stanley, H. Hong, and H. H. Strey, "DNA Cholesteric pitch as a function of density and ionic strength," Biophysical Journal 89, 2552-2557 (2005).
[CrossRef] [PubMed]

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, "Wide temperature range azobenzene nematic and smectic LC materials," Mol. Cryst. Liq. Cryst. 454, 235-245 (2006).Q4
[CrossRef]

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, "Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals," J. Opt. Soc. Am. B. 20, 538-544 (2003).
[CrossRef]

Tachibana, K.

K. Shirota, K. Tachibana, and I. Yamaguchi, "Optical control of the pitch in cholesteric liquid crystals," Proc. SPIE 3740, 372-375 (1999).
[CrossRef]

Tamaoki, N.

N. Tamaoki, "Cholesteric liquid crystals for colour information technology," Adv. Mat. 13, 1135-1147 (2001).Q7
[CrossRef]

Usova, N.

S. Serak, E. Arikainen, H. Gleeson, V. Grozhik, J.-P. Guillou, and N. Usova, "Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant," Liq. Cryst. 29, 19-26 (2002).Q8
[CrossRef]

Vinogradov, V.

V. Vinogradov, A. Khizhniak, L. Kutulya, Yu. Reznikov, and V. Reshetnyak, "Photoinduced change of cholesteric LC-pitch," Mol. Cryst. Liq. Cryst. 192, 273-278 (1990).Q6

Wysocki, J.

W. Haas, J. Adams, and J. Wysocki, "Interaction between UV radiation and cholesteric liquid crystals,’Mol. Cryst. Liq. Cryst. 7, 371-379 (1969).Q5
[CrossRef]

Xu, F.

N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, "Buckling of a sheared cholesteric liquid crystal," Phys. Rev. A 32, 1134-1143 (1985).
[CrossRef] [PubMed]

Yamaguchi, I.

K. Shirota, K. Tachibana, and I. Yamaguchi, "Optical control of the pitch in cholesteric liquid crystals," Proc. SPIE 3740, 372-375 (1999).
[CrossRef]

Yarmolenko, S. N.

W. R. Folks, Yu. A. Reznikov, S. N. Yarmolenko, and O. D. Lavrentovich, "Light-induced periodic lattice of defects in smectic A and C liquid crystals: structural and dynamical aspects," Mol. Cryst. Liq. Cryst. 292, 183-197 (1997).Q3
[CrossRef]

Zolot’ko, A. S.

V. F. Kitaeva and A. S. Zolot’ko, "Square periodic distorsions of the director field in cholesteric liquid crystals," Mol. Cryst. Liq. Cryst. 2, 261-279 (1992).Q2

Adv. Mat. (1)

N. Tamaoki, "Cholesteric liquid crystals for colour information technology," Adv. Mat. 13, 1135-1147 (2001).Q7
[CrossRef]

Appl. Phys. Lett. (1)

N. A. Clark and R. B. Meyer, "Strain-induced instability of monodomain smectic A and cholesteric liquid crystals," Appl. Phys. Lett. 22, 493-494 (1973).
[CrossRef]

Biophysical Journal (1)

C. B. Stanley, H. Hong, and H. H. Strey, "DNA Cholesteric pitch as a function of density and ionic strength," Biophysical Journal 89, 2552-2557 (2005).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

E. Sackmann, "Photochemically induced reversible color changes in cholesteric liquid crystals," J. Am. Chem. Soc. 93, 7088-7090 (1971).
[CrossRef]

J. Opt. Soc. Am. B. (1)

N. V. Tabiryan, S. V. Serak, and V. A. Grozhik, "Photoinduced critical opalescence and reversible all-optical switching in photosensitive liquid crystals," J. Opt. Soc. Am. B. 20, 538-544 (2003).
[CrossRef]

J. Phys. Chem. B (1)

C. Ruslim and K. Ichimura, "Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants," J. Phys. Chem. B 104, 6529-6535 (2000).
[CrossRef]

Liq. Cryst. (1)

S. Serak, E. Arikainen, H. Gleeson, V. Grozhik, J.-P. Guillou, and N. Usova, "Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant," Liq. Cryst. 29, 19-26 (2002).Q8
[CrossRef]

Mol. Cryst. Liq. Cryst. (6)

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, "Light induced effects in cholesteric mixtures with a photosensitive nematic host,".Mol. Cryst. Liq. Cryst. 409, 209-218 (2004).Q9
[CrossRef]

V. Vinogradov, A. Khizhniak, L. Kutulya, Yu. Reznikov, and V. Reshetnyak, "Photoinduced change of cholesteric LC-pitch," Mol. Cryst. Liq. Cryst. 192, 273-278 (1990).Q6

V. F. Kitaeva and A. S. Zolot’ko, "Square periodic distorsions of the director field in cholesteric liquid crystals," Mol. Cryst. Liq. Cryst. 2, 261-279 (1992).Q2

W. R. Folks, Yu. A. Reznikov, S. N. Yarmolenko, and O. D. Lavrentovich, "Light-induced periodic lattice of defects in smectic A and C liquid crystals: structural and dynamical aspects," Mol. Cryst. Liq. Cryst. 292, 183-197 (1997).Q3
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, "Wide temperature range azobenzene nematic and smectic LC materials," Mol. Cryst. Liq. Cryst. 454, 235-245 (2006).Q4
[CrossRef]

W. Haas, J. Adams, and J. Wysocki, "Interaction between UV radiation and cholesteric liquid crystals,’Mol. Cryst. Liq. Cryst. 7, 371-379 (1969).Q5
[CrossRef]

Nature (2)

Y. Lansac, M. Glaser, N. Clark, and O. D. Lavrentovich, "Photocontrolled nanophase segregation in a liquid-crystal solvent," Nature 398, 54-57 (1999).
[CrossRef]

L. D. Barron, "Chirality, Magnetism and Light," Nature 405, 895-896 (2000).
[CrossRef] [PubMed]

Phys. Rev. (1)

H. Hervet, J. Hurault, and F. Rondelez, "Static one-dimensional distortions in cholesteric liquid crystals," Phys. Rev. A8, 3055-3064 (1973).

Phys. Rev. A (2)

H. Pleiner and H. R. Brand, "Thermoundulations versus convection instability in cholesteric liquid crystals: A novel type of pattern competition," Phys. Rev. A 32, 3842-3844 (1985).
[CrossRef] [PubMed]

N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero, and R. Bartolino, "Buckling of a sheared cholesteric liquid crystal," Phys. Rev. A 32, 1134-1143 (1985).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Shirota, K. Tachibana, and I. Yamaguchi, "Optical control of the pitch in cholesteric liquid crystals," Proc. SPIE 3740, 372-375 (1999).
[CrossRef]

Science (1)

D. Bradley, "A new twist in the tale of nature’s asymmetry," Science 264, 908-910 (1994).
[CrossRef] [PubMed]

Sov. Phys. JETF (1)

V. G. Chigrinov, V. V. Belayev, S. V. Belyaev, and M. F. Grebenkin, "Instability of cholesteric liquid crystals in an electric field," Sov. Phys. JETF 50, 994-999 (1979).Q1

Other (4)

P. G. De Gennes, Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).

L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials (Springer-Verlag, New York, Inc., 1994).
[CrossRef]

S. A. Pikin, Structural transformations in liquid crystals (Nauka, Moscow, 1981).

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, "Optical tuning of the reflection of azobenzene liquid crystal doped cholesterics," Adv. Materials, to be published), available online at. http://dx.doi.org/10.1002/adfm.200600776.

Supplementary Material (2)

» Media 1: MPG (2834 KB)     
» Media 2: MPG (2518 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). An image of photogenerated periodic structures in 20 µm thick layer of CLC 1005(11 wt.%)/BL061. The horizontal size of the photo is 200 µm. The period of the texture is 6.4 µm. (b) Series of images (1 to 9) obtained at different focusing planes of a 100x Olympus microscope objective. (c, d) Diffraction pattern of unfocused (c) and focused (d) probe He-Ne laser beam on a periodic structure. (Movie 1: 2.5 Mb). [Media 1]

Fig. 2.
Fig. 2.

(a). The period of photogenerated texture in 20 µm thick layers of CLC 1005/1445 as a function of azo NLC concentration. (b) The period of photogenerated texture in different layers of CLC 1005(14 wt.%)/1445 as a function of cell thickness. The insets show the period of the texture as a function of (hL)1/2. (c-h) Photos of textures recorded with violet laser beam in CLC 1005(14 wt.%)/1445 for several layer thicknesses: (c) 5 µm; (d) 10 µm; (e) 15 µm; (f) 20 µm; (g) 30 µm; (h) 75 µm.

Fig. 3.
Fig. 3.

(a). Bragg reflection wavelength shift as a function of UV exposure time (λ=365 nm, 10 mW/cm2) for red shifting CLC 1005(25 wt.%)/1445 (■) and blue-shifting CLC 1005(25 wt.%)/BL061 (○). Photos demonstrate the CLC cells before and after UV exposure. The reflection band is shifted from red (b) to near IR (c) and from red (d) to green (e) for the CLCs 1005/1445 and 1005/BL061, correspondingly.

Fig. 4.
Fig. 4.

(a). Evolution of photoinduced 2-D structures in a 5-µm thick cell of CLC 1005(7 wt.%)/BL061. The cell is exposed to a violet laser beam of 25 mW/cm2 power density. The exposure time is: (a) 1.3 s; (b) 2.1 s; (c) 4.2 s; (d) 7.8 s; (e) 29.2 s; (f) 42.3 s; (g) 49.2 s; (h) 55.2 s. (Movie 2: 2.8 Mb) [Media 2]

Fig. 5.
Fig. 5.

(a). Dynamics of pattern formation induced in 20-µm thick CLC 1005(11 wt. %)/BL061 (λB =594 nm) by a violet laser beam at different power levels: 1 - 60 µW, 2–90 µW, 3–150 µW, 4- 350 µW, 5–500 µW. (b) Incubation time (■) and evolution time (○) vs power density of radiation (λ=409 nm). The lines show the fits of the data points with reciprocal functions t~1/I.

Metrics