Abstract

Extra ordinary transmission through arrays of subwavelength apertures has been investigated using near-field scanning optical microscopy. For such studies arrays were fabricated to give maximum resonance enhancement of light transmission at the wavelength of illumination that was used (532 nm). To define this enhancement a design was employed that allowed in one field of view of a near-field image the investigation of single apertures of dimension that was similar to what was incorporated into the sub-wavelength hole array. Significant asymmetry in the transmission and the propagation of the light along the aperture array was detected. This non-uniformity could be explained by polarization of the incident light, edge effects and the geometry of the array. The results support a hypothesis of both enhanced transmission due to surface plasmons and a non-diffracting beaming as a function of distance effect in the propagation of the light from the array.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500Å resolution microscope," Ultramicroscopy 13, 227-231 (1984).
    [CrossRef]
  2. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, "Near-Field Scanning Optical Microscopy (NSOM) Development and Biophysical Applications," Biophys. J. 49, 269-279 (1986).
    [CrossRef] [PubMed]
  3. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  4. C. J. Bouwkamp, "On Bethe’s Theory of Diffraction by Small Holes," Philips Res. Rep. 5, 321-332 (1950).
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  7. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  8. W. L. Barnes, W. A. Murray, J. Dintinger, E. Deveaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwalength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  9. L. Martin-Moreno and F. J. Garcia-Vidal, "Optical tranmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619 (2004).
    [CrossRef]
  10. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  11. L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
    [CrossRef] [PubMed]
  12. C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
    [CrossRef]
  13. E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
    [CrossRef]
  14. Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: spectral analysis and near-field optical images in the visible range," Photonics and Nanostructures- Fundamentals and Applications 4, 47-53 (2006).
    [CrossRef]
  15. D. Egorov, B. S. Dennis, G. Blumberg and M. I. Haftel, "Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures," Phys. Rev. B 70, 033404 (2004).
    [CrossRef]
  16. H. Raether, Surface Plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
  17. P. B. Johnson and R. Christie, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  18. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629 (2004).
    [CrossRef] [PubMed]
  19. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
    [CrossRef]
  20. A. A. Michelson, Studies in Optics (University of Chicago Press, 1927).
  21. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [PubMed]
  22. M. W. Docter, I. T. Young, O. M. Piciu, A. Bossche, P. F. A. Alkemade, P. M. Van Den Berg and Y. Garini, "Measuring the wavelength-dependent divergence of transmission through sub-wavelength hole-arrays by spectral imaging," Opt. Express 14, 9477 (2006).
    [CrossRef] [PubMed]

2007

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

2006

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
[CrossRef]

M. W. Docter, I. T. Young, O. M. Piciu, A. Bossche, P. F. A. Alkemade, P. M. Van Den Berg and Y. Garini, "Measuring the wavelength-dependent divergence of transmission through sub-wavelength hole-arrays by spectral imaging," Opt. Express 14, 9477 (2006).
[CrossRef] [PubMed]

2004

L. Martin-Moreno and F. J. Garcia-Vidal, "Optical tranmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619 (2004).
[CrossRef]

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629 (2004).
[CrossRef] [PubMed]

D. Egorov, B. S. Dennis, G. Blumberg and M. I. Haftel, "Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures," Phys. Rev. B 70, 033404 (2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Deveaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwalength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

2001

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

2000

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

1986

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, "Near-Field Scanning Optical Microscopy (NSOM) Development and Biophysical Applications," Biophys. J. 49, 269-279 (1986).
[CrossRef] [PubMed]

1984

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500Å resolution microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

1972

P. B. Johnson and R. Christie, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1950

C. J. Bouwkamp, "On Bethe’s Theory of Diffraction by Small Holes," Philips Res. Rep. 5, 321-332 (1950).

1944

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Alkemade, P. F. A.

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Deveaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwalength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Betzig, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, "Near-Field Scanning Optical Microscopy (NSOM) Development and Biophysical Applications," Biophys. J. 49, 269-279 (1986).
[CrossRef] [PubMed]

Blumberg, G.

D. Egorov, B. S. Dennis, G. Blumberg and M. I. Haftel, "Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures," Phys. Rev. B 70, 033404 (2004).
[CrossRef]

Bossche, A.

Bouwkamp, C. J.

C. J. Bouwkamp, "On Bethe’s Theory of Diffraction by Small Holes," Philips Res. Rep. 5, 321-332 (1950).

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
[CrossRef]

Christie, R.

P. B. Johnson and R. Christie, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

de Fornel, F.

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Degiron, A.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[PubMed]

Dennis, B. S.

D. Egorov, B. S. Dennis, G. Blumberg and M. I. Haftel, "Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures," Phys. Rev. B 70, 033404 (2004).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[PubMed]

Deveaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Deveaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwalength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Deveaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwalength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Docter, M. W.

Duch, A. C.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Deveaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwalength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[PubMed]

Egorov, D.

D. Egorov, B. S. Dennis, G. Blumberg and M. I. Haftel, "Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures," Phys. Rev. B 70, 033404 (2004).
[CrossRef]

Garcia-Vidal, F. J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
[CrossRef]

L. Martin-Moreno and F. J. Garcia-Vidal, "Optical tranmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619 (2004).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[PubMed]

Garini, Y.

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Haftel, M. I.

D. Egorov, B. S. Dennis, G. Blumberg and M. I. Haftel, "Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures," Phys. Rev. B 70, 033404 (2004).
[CrossRef]

Harootunian, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, "Near-Field Scanning Optical Microscopy (NSOM) Development and Biophysical Applications," Biophys. J. 49, 269-279 (1986).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500Å resolution microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Isaacson, M.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, "Near-Field Scanning Optical Microscopy (NSOM) Development and Biophysical Applications," Biophys. J. 49, 269-279 (1986).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500Å resolution microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. Christie, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Koch, M.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Kratschmer, E.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, "Near-Field Scanning Optical Microscopy (NSOM) Development and Biophysical Applications," Biophys. J. 49, 269-279 (1986).
[CrossRef] [PubMed]

Lewis, A.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, "Near-Field Scanning Optical Microscopy (NSOM) Development and Biophysical Applications," Biophys. J. 49, 269-279 (1986).
[CrossRef] [PubMed]

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500Å resolution microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Lezec, H. J.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[PubMed]

Martin-Moreno, L.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
[CrossRef]

L. Martin-Moreno and F. J. Garcia-Vidal, "Optical tranmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619 (2004).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[PubMed]

Muray, A.

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500Å resolution microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Deveaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwalength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Piciu, O. M.

Przybilla, F.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
[CrossRef]

Salomon, L.

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Sonnichsen, C.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Steininger, G.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Van Den Berg, P. M.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Xu, X.

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

Young, I. T.

Zayats, A. V.

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Sonnichsen, A. C. Duch, G. Steininger, M. Koch, G von Plessen, and J. Feldmann, "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

Biophys. J.

E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, "Near-Field Scanning Optical Microscopy (NSOM) Development and Biophysical Applications," Biophys. J. 49, 269-279 (1986).
[CrossRef] [PubMed]

Nat. Phys.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno and T. W. Ebbesen, "How light emerges from an illuminated array of subwavelength holes," Nat. Phys. 2, 120 (2006).
[CrossRef]

Nature

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Express

Philips Res. Rep.

C. J. Bouwkamp, "On Bethe’s Theory of Diffraction by Small Holes," Philips Res. Rep. 5, 321-332 (1950).

Phys. Rev.

H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. B

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

D. Egorov, B. S. Dennis, G. Blumberg and M. I. Haftel, "Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures," Phys. Rev. B 70, 033404 (2004).
[CrossRef]

P. B. Johnson and R. Christie, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett.

L. Salomon, F. Grillot, A. V. Zayats, F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Deveaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and their role in the enhanced transmission of light through periodic arrays of subwalength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[PubMed]

Ultramicroscopy

A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500Å resolution microscope," Ultramicroscopy 13, 227-231 (1984).
[CrossRef]

Other

Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: spectral analysis and near-field optical images in the visible range," Photonics and Nanostructures- Fundamentals and Applications 4, 47-53 (2006).
[CrossRef]

H. Raether, Surface Plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).

A. A. Michelson, Studies in Optics (University of Chicago Press, 1927).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

SEM images of a typical sample fabricated by FIB. (a),(b),(c) views of the sample with typical dimension achieved. (d) lateral cut showing depth of the holes and thickness of the gold coating.

Fig. 2.
Fig. 2.

Schematic of the experimental setup for the near field and far field characterization of the nano-holes.

Fig. 3.
Fig. 3.

(a). Online AFM and (b) NSOM images

Fig. 4.
Fig. 4.

NSOM image in Fig. 3 after re-scaling.

Fig. 5.
Fig. 5.

(a). AFM image of the array; (b) NSOM image of the same region.

Fig. 6.
Fig. 6.

(a). line profile over the array taken in the x direction (b) line profile over the array taken in the y direction. (The white line indicates where the profile was taken)

Fig. 7.
Fig. 7.

Simulation of the convolution effect when imaging a 9x9 hole array with a 200 nm NSOM aperture. (left) object, (middle) imaging probe, (right) resulting image (scale is in pixels, 1 pixel=30 nm).

Fig. 8.
Fig. 8.

schematic of the experiment conducted.

Fig. 9.
Fig. 9.

(a). to (f) xy optical sections at different z distances from the sample. The color map depicted in (a) is common to all the six images. Arrows in (e) and (f) point to the light coming from the 400 nm aperture which becomes visible at larger z distances due to diffraction.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k sp = k 0 sin θ ± i G x ± j G y
k sp = 2 π λ ( ε m ε d ε m + ε d ) 1 2
a 0 = λ ( ( i 2 + j 2 ) ε m + ε d ε m ε d ) 1 2
L i = ( 2 Im [ k sp ] ) 1
Im [ k sp ] = 2 π λ ( Re [ ε m ] ε d Re [ ε m ] + ε d ) 3 2 Im [ ε m ] 2 Re [ ε m ] 2
C = I max I min I max + I min

Metrics