Abstract

We demonstrate high gain amplification of 160-femtosecond pulses in a compact double-pass cryogenic Ti:sapphire amplifier. The setup involves a negative GVD mirrors recompression stage, and operates with a repetition rate between 0.2 and 4 MHz with a continuous pump laser. Amplification factors as high as 17 and 320 nJ Fourier-limited pulses are obtained at a 800 kHz repetition rate.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Rulliere, ed., Femtosecond Laser Pulses: Principles and Experiments, 2nd edition, (Advanced Texts in Physics, 2005).
  2. S. Backus, C. G. DurfeeIII. M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
    [CrossRef]
  3. P. F. Moulton, "Spectroscopic and laser characteristics of Ti:Al2O3," J. Opt. Soc. Am. B 3, 125-133 (1986).
    [CrossRef]
  4. J. Squier, F. Salin, and G. Mourou, "100-fs pulse generation and amplification in Ti:Al2O3," Opt. Lett. 16, 324- 326 (1991).
    [CrossRef] [PubMed]
  5. C. P. J. Barty, T. Guo, C. Le Blanc, F. Rasky, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, "Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification," Opt. Lett. 21, 668-670 (1996).
    [CrossRef] [PubMed]
  6. Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, "Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser," Opt. Lett. 23, 1384-1386 (1998).
    [CrossRef]
  7. J. Z. H. Yang and B. C. Walker, "0.09-terawatt pulses with a 31% efficient, kilohertz repetition-rate Ti:sapphire regenerative amplifier," Opt. Lett. 26, 453-455 (2001).
    [CrossRef]
  8. R. Budkus, R. Danelius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
    [CrossRef]
  9. D. M. Gaudiosi, A. L. Lytle, P. Kohl, M. M. Murnane, H. C. Kapteyn, and S. Backus, "11-W average power Ti:sapphire amplifier system using downchirped pulse amplification," Opt. Lett. 29, 2665-2667 (2004).
    [CrossRef] [PubMed]
  10. I. Matsushima, H. Yashiro, and T. Tomie, "10 kHz 40W Ti:sapphire regenerative ring amplifier," Opt. Lett. 31, 2066-2068 (2006).
    [CrossRef] [PubMed]
  11. K. H. Hong, S. Kostritsa, T. J. Yu, J. H. Sung, I. W. Choi, Y.-C. Noh, D.-K. Ko, and J. Lee, "100-kHz highpower femtosecond Ti:sapphire laser based on downchirped regenerative amplification," Opt. Express 14, 970- 972 (2006).
    [CrossRef] [PubMed]
  12. T. B. Norris, "Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation," Opt. Lett. 17, 1009-1011 (1992).
    [CrossRef] [PubMed]
  13. Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, "High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme," Appl. Phys. Lett. 74, 3622-3623 (1999).
    [CrossRef]
  14. Z. Liu, H. Murakami, T. Kozeki, H. Ohtake, and N. Sarukura, "High-gain, reflection-double pass, Ti:sapphire continuous-wave amplifier delivering 5.77 waverage power, 82MHz repetition rate, femtosecond pulses," Appl. Phys. Lett. 76, 3182-3183 (2000).
    [CrossRef]
  15. R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, and E. Riedle, "12-fs pulses from a continuous-wavepumped 200-nJ Ti:sapphire amplifier at a variable repetition rate as high as 4 MHz," Opt. Lett. 28, 2118-2120 (2003).
    [CrossRef] [PubMed]
  16. M. Ramaswamy, M. Ulman, J. Paye, and J. J. Fujimoto, "Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A1203 laser," Opt. Lett. 18, 1822-1824 (1993).
    [CrossRef] [PubMed]
  17. M. S. Pshenichnikov, W. P. de Boej, and D. A. Wiersma, "Generation of 13-fs, 5-MW pulses from a cavitydumped Ti:sapphire laser," Opt. Lett. 19, 572-574 (1994).
    [CrossRef] [PubMed]
  18. S. Schneider, A. Stockmann, and W. Schuesslbauer, "Self-starting mode-locked cavity-dumped femtosecond Ti:sapphire laser employing a semiconductor saturable absorber mirror," Opt. Express 6, 220-226 (2000).
    [CrossRef] [PubMed]
  19. J. Wenger, R. Tualle-Brouri, and P. Grangier, "Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification," Opt. Lett. 29, 1267-1269 (2004).
    [CrossRef] [PubMed]
  20. J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Time-resolved homodyne characterization of individual quadrature-entangled pulses," Eur. Phys. J. D 32, 391-393 (2005).
    [CrossRef]
  21. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, "Generating Optical Schrodinger kittens for quantum information processing," Science 312, 83-86 (2006).
    [CrossRef] [PubMed]
  22. R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004).
    [CrossRef] [PubMed]
  23. F. Salin, C. Le Blanc, J. Squier, and C. Barty, "Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses," Opt. Lett. 23, 718-720 (1998).
    [CrossRef]
  24. M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Ch’eriaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti:sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
    [CrossRef]
  25. M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002).
    [CrossRef]
  26. A. C. DeFranzo and B. G. Pazol, "Index of refraction measurement on sapphire at low temperatures and visible wavelengths," Appl. Opt. 32, 2224-2234 (1993).
    [CrossRef] [PubMed]
  27. H. Eilers, U. Hmmerich, and W. M. Yen, "Temperature-dependent beam-deflection spectroscopy of Ti3+-doped sapphire," J. Opt. Soc. Am. B 10, 584-586 (1993).
    [CrossRef]
  28. C. Byvick and A. Buoncristiani, "Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra," IEEE J. Quantum Electron. 21, 1619-1624 (1985).
    [CrossRef]
  29. M. Delaigue, PhD dissertation, Universite de Bordeaux (2006).
  30. Y. Li, I. Duncan, and T. Morrow, "Absolute fluorescence quantum efficiency of titanium-doped sapphire at ambient temperature," J. of Lumin. 52, 275-276 (1992).
    [CrossRef]

2006 (3)

I. Matsushima, H. Yashiro, and T. Tomie, "10 kHz 40W Ti:sapphire regenerative ring amplifier," Opt. Lett. 31, 2066-2068 (2006).
[CrossRef] [PubMed]

K. H. Hong, S. Kostritsa, T. J. Yu, J. H. Sung, I. W. Choi, Y.-C. Noh, D.-K. Ko, and J. Lee, "100-kHz highpower femtosecond Ti:sapphire laser based on downchirped regenerative amplification," Opt. Express 14, 970- 972 (2006).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, "Generating Optical Schrodinger kittens for quantum information processing," Science 312, 83-86 (2006).
[CrossRef] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, "Generating Optical Schrodinger kittens for quantum information processing," Science 312, 83-86 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Time-resolved homodyne characterization of individual quadrature-entangled pulses," Eur. Phys. J. D 32, 391-393 (2005).
[CrossRef]

2004 (4)

J. Wenger, R. Tualle-Brouri, and P. Grangier, "Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification," Opt. Lett. 29, 1267-1269 (2004).
[CrossRef] [PubMed]

R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004).
[CrossRef] [PubMed]

R. Budkus, R. Danelius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

D. M. Gaudiosi, A. L. Lytle, P. Kohl, M. M. Murnane, H. C. Kapteyn, and S. Backus, "11-W average power Ti:sapphire amplifier system using downchirped pulse amplification," Opt. Lett. 29, 2665-2667 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002).
[CrossRef]

2001 (1)

2000 (3)

S. Schneider, A. Stockmann, and W. Schuesslbauer, "Self-starting mode-locked cavity-dumped femtosecond Ti:sapphire laser employing a semiconductor saturable absorber mirror," Opt. Express 6, 220-226 (2000).
[CrossRef] [PubMed]

Z. Liu, H. Murakami, T. Kozeki, H. Ohtake, and N. Sarukura, "High-gain, reflection-double pass, Ti:sapphire continuous-wave amplifier delivering 5.77 waverage power, 82MHz repetition rate, femtosecond pulses," Appl. Phys. Lett. 76, 3182-3183 (2000).
[CrossRef]

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Ch’eriaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti:sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

1999 (1)

Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, "High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme," Appl. Phys. Lett. 74, 3622-3623 (1999).
[CrossRef]

1998 (3)

1996 (1)

1994 (1)

1993 (3)

1992 (2)

Y. Li, I. Duncan, and T. Morrow, "Absolute fluorescence quantum efficiency of titanium-doped sapphire at ambient temperature," J. of Lumin. 52, 275-276 (1992).
[CrossRef]

T. B. Norris, "Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation," Opt. Lett. 17, 1009-1011 (1992).
[CrossRef] [PubMed]

1991 (1)

1986 (1)

1985 (1)

C. Byvick and A. Buoncristiani, "Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra," IEEE J. Quantum Electron. 21, 1619-1624 (1985).
[CrossRef]

Adler, F.

Backus, S.

Barty, C.

Barty, C. P. J.

Baum, P.

Beutter, M.

Budkus, R.

R. Budkus, R. Danelius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

Buoncristiani, A.

C. Byvick and A. Buoncristiani, "Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra," IEEE J. Quantum Electron. 21, 1619-1624 (1985).
[CrossRef]

Byvick, C.

C. Byvick and A. Buoncristiani, "Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra," IEEE J. Quantum Electron. 21, 1619-1624 (1985).
[CrossRef]

Cerf, N. J.

R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004).
[CrossRef] [PubMed]

Ch’eriaux, G.

M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002).
[CrossRef]

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Ch’eriaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti:sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Chambaret, J. P.

M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002).
[CrossRef]

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Ch’eriaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti:sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Choi, I. W.

Danelius, R.

R. Budkus, R. Danelius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

de Boej, W. P.

DeFranzo, A. C.

Dubietis, A.

R. Budkus, R. Danelius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

Duncan, I.

Y. Li, I. Duncan, and T. Morrow, "Absolute fluorescence quantum efficiency of titanium-doped sapphire at ambient temperature," J. of Lumin. 52, 275-276 (1992).
[CrossRef]

Durfee, C. G.

S. Backus, C. G. DurfeeIII. M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Eilers, H.

Ferrè, S.

M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002).
[CrossRef]

Fiurásek, J.

R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004).
[CrossRef] [PubMed]

Fujimoto, J. J.

García-Patrón, R.

R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004).
[CrossRef] [PubMed]

Gaudiosi, D. M.

Grangier, P.

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Time-resolved homodyne characterization of individual quadrature-entangled pulses," Eur. Phys. J. D 32, 391-393 (2005).
[CrossRef]

J. Wenger, R. Tualle-Brouri, and P. Grangier, "Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification," Opt. Lett. 29, 1267-1269 (2004).
[CrossRef] [PubMed]

R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004).
[CrossRef] [PubMed]

Guo, T.

Hmmerich, U.

Hong, K. H.

Huber, R.

Izumida, S.

Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, "High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme," Appl. Phys. Lett. 74, 3622-3623 (1999).
[CrossRef]

Kapteyn, H. C.

Ko, D.-K.

Kohl, P.

Kostritsa, S.

Kozeki, T.

Z. Liu, H. Murakami, T. Kozeki, H. Ohtake, and N. Sarukura, "High-gain, reflection-double pass, Ti:sapphire continuous-wave amplifier delivering 5.77 waverage power, 82MHz repetition rate, femtosecond pulses," Appl. Phys. Lett. 76, 3182-3183 (2000).
[CrossRef]

Kuramoto, Y.

Le Blanc, C.

Lee, J.

Leitenstorfer, A.

Li, Y.

Y. Li, I. Duncan, and T. Morrow, "Absolute fluorescence quantum efficiency of titanium-doped sapphire at ambient temperature," J. of Lumin. 52, 275-276 (1992).
[CrossRef]

Lindner, F.

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Ch’eriaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti:sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Liu, Z.

Z. Liu, H. Murakami, T. Kozeki, H. Ohtake, and N. Sarukura, "High-gain, reflection-double pass, Ti:sapphire continuous-wave amplifier delivering 5.77 waverage power, 82MHz repetition rate, femtosecond pulses," Appl. Phys. Lett. 76, 3182-3183 (2000).
[CrossRef]

Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, "High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme," Appl. Phys. Lett. 74, 3622-3623 (1999).
[CrossRef]

Lytle, A. L

Matsushima, I.

Morrow, T.

Y. Li, I. Duncan, and T. Morrow, "Absolute fluorescence quantum efficiency of titanium-doped sapphire at ambient temperature," J. of Lumin. 52, 275-276 (1992).
[CrossRef]

Moulton, P. F.

Mourou, G.

Murakami, H.

Z. Liu, H. Murakami, T. Kozeki, H. Ohtake, and N. Sarukura, "High-gain, reflection-double pass, Ti:sapphire continuous-wave amplifier delivering 5.77 waverage power, 82MHz repetition rate, femtosecond pulses," Appl. Phys. Lett. 76, 3182-3183 (2000).
[CrossRef]

Murnane, M. M.

Nabekawa, Y.

Noh, Y.-C.

Norris, T. B.

Notebaert, L.

M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002).
[CrossRef]

Ohtake, H.

Z. Liu, H. Murakami, T. Kozeki, H. Ohtake, and N. Sarukura, "High-gain, reflection-double pass, Ti:sapphire continuous-wave amplifier delivering 5.77 waverage power, 82MHz repetition rate, femtosecond pulses," Appl. Phys. Lett. 76, 3182-3183 (2000).
[CrossRef]

Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, "High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme," Appl. Phys. Lett. 74, 3622-3623 (1999).
[CrossRef]

Ono, S.

Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, "High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme," Appl. Phys. Lett. 74, 3622-3623 (1999).
[CrossRef]

Ourjoumtsev, A.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, "Generating Optical Schrodinger kittens for quantum information processing," Science 312, 83-86 (2006).
[CrossRef] [PubMed]

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Time-resolved homodyne characterization of individual quadrature-entangled pulses," Eur. Phys. J. D 32, 391-393 (2005).
[CrossRef]

Paye, J.

Pazol, B. G.

Piskarskas, A.

R. Budkus, R. Danelius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

Pittman, M.

M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002).
[CrossRef]

Pshenichnikov, M. S.

Ramaswamy, M.

Rasky, F.

Riedle, E.

Rose-Petruck, C.

Rousseau, J. P.

M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002).
[CrossRef]

Salin, F.

Sarukura, N.

Z. Liu, H. Murakami, T. Kozeki, H. Ohtake, and N. Sarukura, "High-gain, reflection-double pass, Ti:sapphire continuous-wave amplifier delivering 5.77 waverage power, 82MHz repetition rate, femtosecond pulses," Appl. Phys. Lett. 76, 3182-3183 (2000).
[CrossRef]

Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, "High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme," Appl. Phys. Lett. 74, 3622-3623 (1999).
[CrossRef]

Schneider, S.

Schuesslbauer, W.

Sekikawa, T.

Squier, J.

Stabinis, A.

R. Budkus, R. Danelius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

Stockmann, A.

Sung, J. H.

Togashi, T.

Tomie, T.

Tualle-Brouri, A.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, "Generating Optical Schrodinger kittens for quantum information processing," Science 312, 83-86 (2006).
[CrossRef] [PubMed]

Tualle-Brouri, R.

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Time-resolved homodyne characterization of individual quadrature-entangled pulses," Eur. Phys. J. D 32, 391-393 (2005).
[CrossRef]

J. Wenger, R. Tualle-Brouri, and P. Grangier, "Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification," Opt. Lett. 29, 1267-1269 (2004).
[CrossRef] [PubMed]

R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004).
[CrossRef] [PubMed]

Ulman, M.

Walker, B. C.

Watanabe, S.

Wenger, J.

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Time-resolved homodyne characterization of individual quadrature-entangled pulses," Eur. Phys. J. D 32, 391-393 (2005).
[CrossRef]

R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004).
[CrossRef] [PubMed]

J. Wenger, R. Tualle-Brouri, and P. Grangier, "Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification," Opt. Lett. 29, 1267-1269 (2004).
[CrossRef] [PubMed]

Wiersma, D. A.

Wilson, K. R.

Yakovlev, V. V.

Yamakawa, K.

Yang, J. Z. H.

Yashiro, H.

Yen, W. M.

Yu, T. J.

Zavelani-Rossi, M.

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Ch’eriaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti:sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Ch’eriaux, and J. P. Chambaret, "Control of thermal effects for high-intensity Ti:sapphire laser chains," Appl. Phys. B 70, S193-196 (2000).
[CrossRef]

M. Pittman, S. Ferrè, J. P. Rousseau, L. Notebaert, J. P. Chambaret, and G. Cheriaux, "Design and characterization of a near-diffraction-limited femtosecond 100-TW10-Hz high-intensity laser system," Appl. Phys. B 74, 529-535 (2002).
[CrossRef]

R. Budkus, R. Danelius, A. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

Z. Liu, S. Izumida, S. Ono, H. Ohtake, and N. Sarukura, "High-repetition-rate, high-average-power, mode-locked Ti:sapphire laser with an intracavity continuous-wave amplification scheme," Appl. Phys. Lett. 74, 3622-3623 (1999).
[CrossRef]

Z. Liu, H. Murakami, T. Kozeki, H. Ohtake, and N. Sarukura, "High-gain, reflection-double pass, Ti:sapphire continuous-wave amplifier delivering 5.77 waverage power, 82MHz repetition rate, femtosecond pulses," Appl. Phys. Lett. 76, 3182-3183 (2000).
[CrossRef]

Eur. Phys. J. D (1)

J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, "Time-resolved homodyne characterization of individual quadrature-entangled pulses," Eur. Phys. J. D 32, 391-393 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Byvick and A. Buoncristiani, "Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra," IEEE J. Quantum Electron. 21, 1619-1624 (1985).
[CrossRef]

J. of Lumin. (1)

Y. Li, I. Duncan, and T. Morrow, "Absolute fluorescence quantum efficiency of titanium-doped sapphire at ambient temperature," J. of Lumin. 52, 275-276 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (12)

J. Wenger, R. Tualle-Brouri, and P. Grangier, "Pulsed homodyne measurements of femtosecond squeezed pulses generated by single-pass parametric deamplification," Opt. Lett. 29, 1267-1269 (2004).
[CrossRef] [PubMed]

T. B. Norris, "Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation," Opt. Lett. 17, 1009-1011 (1992).
[CrossRef] [PubMed]

R. Huber, F. Adler, A. Leitenstorfer, M. Beutter, P. Baum, and E. Riedle, "12-fs pulses from a continuous-wavepumped 200-nJ Ti:sapphire amplifier at a variable repetition rate as high as 4 MHz," Opt. Lett. 28, 2118-2120 (2003).
[CrossRef] [PubMed]

M. Ramaswamy, M. Ulman, J. Paye, and J. J. Fujimoto, "Cavity-dumped femtosecond Kerr-lens mode-locked Ti:A1203 laser," Opt. Lett. 18, 1822-1824 (1993).
[CrossRef] [PubMed]

M. S. Pshenichnikov, W. P. de Boej, and D. A. Wiersma, "Generation of 13-fs, 5-MW pulses from a cavitydumped Ti:sapphire laser," Opt. Lett. 19, 572-574 (1994).
[CrossRef] [PubMed]

J. Squier, F. Salin, and G. Mourou, "100-fs pulse generation and amplification in Ti:Al2O3," Opt. Lett. 16, 324- 326 (1991).
[CrossRef] [PubMed]

C. P. J. Barty, T. Guo, C. Le Blanc, F. Rasky, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, "Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification," Opt. Lett. 21, 668-670 (1996).
[CrossRef] [PubMed]

Y. Nabekawa, Y. Kuramoto, T. Togashi, T. Sekikawa, and S. Watanabe, "Generation of 0.66-TW pulses at 1 kHz by a Ti:sapphire laser," Opt. Lett. 23, 1384-1386 (1998).
[CrossRef]

J. Z. H. Yang and B. C. Walker, "0.09-terawatt pulses with a 31% efficient, kilohertz repetition-rate Ti:sapphire regenerative amplifier," Opt. Lett. 26, 453-455 (2001).
[CrossRef]

D. M. Gaudiosi, A. L. Lytle, P. Kohl, M. M. Murnane, H. C. Kapteyn, and S. Backus, "11-W average power Ti:sapphire amplifier system using downchirped pulse amplification," Opt. Lett. 29, 2665-2667 (2004).
[CrossRef] [PubMed]

I. Matsushima, H. Yashiro, and T. Tomie, "10 kHz 40W Ti:sapphire regenerative ring amplifier," Opt. Lett. 31, 2066-2068 (2006).
[CrossRef] [PubMed]

F. Salin, C. Le Blanc, J. Squier, and C. Barty, "Thermal eigenmode amplifiers for diffraction-limited amplification of ultrashort pulses," Opt. Lett. 23, 718-720 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

R. García-Patrón, J. Fiurásek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, "Proposal for a loopholefree Bell test using homodyne detection," Phys. Rev. Lett. 93, 130409-130412 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. Backus, C. G. DurfeeIII. M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Science (1)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, "Generating Optical Schrodinger kittens for quantum information processing," Science 312, 83-86 (2006).
[CrossRef] [PubMed]

Other (2)

M. Delaigue, PhD dissertation, Universite de Bordeaux (2006).

C. Rulliere, ed., Femtosecond Laser Pulses: Principles and Experiments, 2nd edition, (Advanced Texts in Physics, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Cryogenic double-pass amplifier setup with compact recompression stage. OI: optical isolator. M1, M2: dichroic mirrors. L1, L2: focusing lenses with f = 75 mm. Ti:Sa: Brewster-cut highly-doped crystal. The mirrors m, m’ have negative GVD.

Fig. 2.
Fig. 2.

Amplification factor (oe-15-14-8864-i001) and average output power (oe-15-14-8864-i002) as a function of the repetition rate, for 15 W pump power and a temperature of 110 K.

Fig. 3.
Fig. 3.

Amplification factor and average output power as a function of the crystal mount temperature, for different pump powers and a fixed repetition rate of 800 kHz.

Fig. 4.
Fig. 4.

Fit of the variation of the amplification factor with temperature for the same conditions as in Fig. 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g = exp [ G λ ( T ) m T P ]
f = κπω 532 2 ρP abs dn T
m T P ~ 1 1 + ( f 0 f ) 2 ~ 1 1 + aP 2 exp ( bT )
G λ ( T ) ~ cP 1 + ( T T λ ) 2 δT 2

Metrics