Abstract

A double-layered metallic grating (metal-dielectric-metal) with a complementary capacitive (isolated discs) / inductive (connected film with apertures) structure exhibits multiple infrared transmission resonances peaks with up to 70% at wavelength ranges corresponding to local modes for geometric dimensions less than a wavelength. The period, dielectric thickness, refractive index and unit cell size of the periodic structure modulate the local mode positions and amplitudes. The electromagnetic field distribution and energy flow in the structure explain the relation of transmission resonance, local modes, and distributed surface plasma wave modes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Brown and O. B. McMahon, "Large electromagnetic stop bands in metallodielectric photonic Crystals," Appl. Phys. Lett. 67, 2138-2140 (1995).
    [CrossRef]
  2. J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
    [CrossRef] [PubMed]
  3. S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  4. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B62, 10696-10705 (2000).
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  6. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
    [CrossRef] [PubMed]
  7. W. Fan, S. Zhang, K. J. Malloy and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Exp. 13, 4406-4413 (2005).
    [CrossRef]
  8. W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
    [CrossRef]
  9. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
    [CrossRef] [PubMed]
  10. S. R. J. Brueck, "Interferometric lithography - from periodic arrays to arbitrary patterns," Microelectron. Eng. 42, 145-148 (1998).
    [CrossRef]
  11. W. Zietkowski and M. Zaluzny, "Propagation characteristics of surface-plasmon waveguides operating in the mid- and far infrared: Nonperturbative approach," J. Appl. Phys. 96, 6029-6034 (2004).
    [CrossRef]
  12. D. Sarid, "Long_range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
    [CrossRef]
  13. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
    [CrossRef]
  14. J. Bellessa, C. Bonnand, J. C. Plenet and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
    [CrossRef] [PubMed]
  15. B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, "Metallic inductive and capacitive grids: theory and experiment," J. Opt. Soc. Am. A 19, 1352-1359 (2002).
    [CrossRef]
  16. L. Li "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024- 1035 (1996).
    [CrossRef]

2006

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

2005

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

W. Fan, S. Zhang, K. J. Malloy and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Exp. 13, 4406-4413 (2005).
[CrossRef]

S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

2004

J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
[CrossRef] [PubMed]

W. Zietkowski and M. Zaluzny, "Propagation characteristics of surface-plasmon waveguides operating in the mid- and far infrared: Nonperturbative approach," J. Appl. Phys. 96, 6029-6034 (2004).
[CrossRef]

J. Bellessa, C. Bonnand, J. C. Plenet and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

2003

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

2002

2000

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B62, 10696-10705 (2000).

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

S. R. J. Brueck, "Interferometric lithography - from periodic arrays to arbitrary patterns," Microelectron. Eng. 42, 145-148 (1998).
[CrossRef]

1996

1995

E. R. Brown and O. B. McMahon, "Large electromagnetic stop bands in metallodielectric photonic Crystals," Appl. Phys. Lett. 67, 2138-2140 (1995).
[CrossRef]

1981

D. Sarid, "Long_range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

1969

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Abdenour, A.

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Agi, K.

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

Brown, E. R.

E. R. Brown and O. B. McMahon, "Large electromagnetic stop bands in metallodielectric photonic Crystals," Appl. Phys. Lett. 67, 2138-2140 (1995).
[CrossRef]

Brueck, S. R. J.

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

W. Fan, S. Zhang, K. J. Malloy and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Exp. 13, 4406-4413 (2005).
[CrossRef]

S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, "Metallic inductive and capacitive grids: theory and experiment," J. Opt. Soc. Am. A 19, 1352-1359 (2002).
[CrossRef]

S. R. J. Brueck, "Interferometric lithography - from periodic arrays to arbitrary patterns," Microelectron. Eng. 42, 145-148 (1998).
[CrossRef]

Christ, A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Economou, E. N.

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

Fan, W.

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

W. Fan, S. Zhang, K. J. Malloy and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Exp. 13, 4406-4413 (2005).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, "Metallic inductive and capacitive grids: theory and experiment," J. Opt. Soc. Am. A 19, 1352-1359 (2002).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Giessen, H.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Krishna, S.

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Kuhl, J.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Li, L.

Malloy, K. J.

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

W. Fan, S. Zhang, K. J. Malloy and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Exp. 13, 4406-4413 (2005).
[CrossRef]

S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, "Metallic inductive and capacitive grids: theory and experiment," J. Opt. Soc. Am. A 19, 1352-1359 (2002).
[CrossRef]

McMahon, O. B.

E. R. Brown and O. B. McMahon, "Large electromagnetic stop bands in metallodielectric photonic Crystals," Appl. Phys. Lett. 67, 2138-2140 (1995).
[CrossRef]

Minhas, B.

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

Minhas, B. K.

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B62, 10696-10705 (2000).

Osgood, R. M.

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Paniou, N. C.

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Panoiu, N. C.

S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
[CrossRef] [PubMed]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

Sarid, D.

D. Sarid, "Long_range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Tikhodeev, S. G.

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Zaluzny, M.

W. Zietkowski and M. Zaluzny, "Propagation characteristics of surface-plasmon waveguides operating in the mid- and far infrared: Nonperturbative approach," J. Appl. Phys. 96, 6029-6034 (2004).
[CrossRef]

Zhang, S.

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

W. Fan, S. Zhang, K. J. Malloy and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Exp. 13, 4406-4413 (2005).
[CrossRef]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Zietkowski, W.

W. Zietkowski and M. Zaluzny, "Propagation characteristics of surface-plasmon waveguides operating in the mid- and far infrared: Nonperturbative approach," J. Appl. Phys. 96, 6029-6034 (2004).
[CrossRef]

Appl. Phys. Lett.

E. R. Brown and O. B. McMahon, "Large electromagnetic stop bands in metallodielectric photonic Crystals," Appl. Phys. Lett. 67, 2138-2140 (1995).
[CrossRef]

J. Appl. Phys.

W. Zietkowski and M. Zaluzny, "Propagation characteristics of surface-plasmon waveguides operating in the mid- and far infrared: Nonperturbative approach," J. Appl. Phys. 96, 6029-6034 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Microelectron. Eng.

S. R. J. Brueck, "Interferometric lithography - from periodic arrays to arbitrary patterns," Microelectron. Eng. 42, 145-148 (1998).
[CrossRef]

Nano Lett.

W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Exp.

W. Fan, S. Zhang, K. J. Malloy and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Exp. 13, 4406-4413 (2005).
[CrossRef]

Phys. Rev.

E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B62, 10696-10705 (2000).

Phys. Rev. Lett.

S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005).
[CrossRef] [PubMed]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003).
[CrossRef] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004).
[CrossRef] [PubMed]

D. Sarid, "Long_range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Science

J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(color) (a). The 45° view SEM picture of double layered complementary metallic structure; (b). Schematic diagram of (a); (c). Schematic diagram of the sample in (a) filled by refractive index matching liquid and clamped between two BK7 glass plates.

Fig. 2.
Fig. 2.

Transmission spectra of five samples filled in by n=1.4 matching liquid and sandwiched by two glass substrates with (a) Same thickness (around 0.68μm) and varying pitches (Sample A 0.8μm, sample B 1.0μm, and sample C 1.2μm), (b) Same pitch (1.0μm) and varying thickness (Sample D 0.5μm, sample B 0.7μm, and sample E 1.5μm)

Fig. 3.
Fig. 3.

(color) Angular dependence of the transmission peaks with TM polarized incident light from experimental spectra. (a) Sample D; (b) Sample B; (c) Sample E.

Fig. 4.
Fig. 4.

(color) The experimental (red) and RCWA simulation (black) spectra of the sample E.

Fig. 5.
Fig. 5.

(a) The localized mode wavelengths vs the dielectric thickness. (b) The localized mode wavelengths vs the refractive index of different matching liquid and diameter of the opening size of sample B.

Fig. 6.
Fig. 6.

(color) The electric and magnetic fields and phase distribution in each unit cell for sample E at 3.9 μm. Top: in the middle of Au aperture. Bottom: in the middle of Au disc.

Fig. 7.
Fig. 7.

(color) The energy flow (black) and phase propagation (red and blue for E and H) through the unit structure.

Tables (1)

Tables Icon

Table I. Sample geometrical parameters (all dimensions in μm)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

= Λ ( ε d ε m ( λ ) ε d + ε m ( λ ) ± sin ( θ ) )
ε m ( λ ) = 1 1 λ p 2 1 λ ( 1 λ + i 1 λ γ )
λ n ( 2 T m + D 2 ) + Δ , m = 1,2,3

Metrics