Abstract

We proposed a novel InP based photonic wire waveguide with an InAlAs oxide cladding. The InGaAsP/InAlAs-oxide structure in the vertical direction provides an ultrahigh index contrast waveguide, and it allows a bend radius of a few μm with no vertical leakage loss. The InP photonic wire waveguide with a 500×300-nm rectangular channel core (refractive index n ~ 3.36) and an InAlAs oxide cladding (n ~ 2.4) was numerically analyzed using the three-dimensional time-domain beam propagation method (3D TD-BPM). We predicted that the U-bend waveguide with a 3-μm bend radius can be realized with the propagation loss of < 0.5 dB.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, HenryI. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390,143 (1997).
    [CrossRef]
  2. A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 40,L383-L385 (2001).
    [CrossRef]
  3. B. E. Little, J. S. Foresi. G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
    [CrossRef]
  4. T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43,L673-L675 (2004).
    [CrossRef]
  5. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16,2478-2480 (2004).
    [CrossRef]
  6. S. Dupont, A. Beaurain, P. Miska, M. Zegaoui, J.-P. Vilcot, H. W. Li, M. Constant, D. Decoster, and J. Chazelas, "Low-loss InGaAsP/InP submicron optical waveguides fabricated by ICP etching," Electron. Lett. 40,865-866 (2004).
    [CrossRef]
  7. Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, "Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure," Electron. Lett. 31,560-562 (1995).
    [CrossRef]
  8. M. Fujita, T. Baba, A. Matsutani, F. Koyama, and K. Iga, "A novel GaInAsP microcylinder laser with AlInAs(Ox) claddings," in Proceedings of IPRM (Davos, Switzerland, May 1999), Paper TuB1-5.
  9. N. Iwai, T. Mukaihara, M. Itoh, S. Arakawa, H. Shimizu, and A. Kasukawa, "High reliable, low threshold 1.3μm SL-QW PACIS (p-substrate Al-oxide confined inner stripe) laser array," in Proceedings of IPRM (Davos, Switzerland, May 1999), Paper TuB1-6.
  10. H. Yokoi, T. Mizumoto, H. Masaki, N. Futakuchi, T. Ohtsuka, and Y. Nakano, "Selective oxidation for enhancement of magneto-optic effect in optical isolator with semiconductor guiding layer," Electron. Lett. 37,240-241 (2001).
    [CrossRef]
  11. K. Koshiba, Y. Tsuji, and M. Hikari, "Time-domain beam propagation method and its application to photonic crystal circuits," IEEE/OSAJ. Lightwave Technol. 18,102-110 (2000).
    [CrossRef]
  12. J. Shibayama, T. Takahashi, J. Yamauchi, and H. Nakano, "Finite-difference time-domain beam propagation method for analysis of three-dimensional optical waveguides," Electron. Lett. 35,1548-1549 (1999).
    [CrossRef]
  13. V. Emerencio de Nascimento and B. H. Viana Borges, "A new time domain BPM based on locally one dimensional method," in Proceedings of Microwave and Optoelectronics (July 2005), pp. 245-248.
  14. J. P. Bérenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114,185-200 (1994).
    [CrossRef]
  15. C. Vassallo and F. Collino, "Highly efficient absorbing boundary conditions for the beam propagation method," IEEE/OSAJ. Lightwave Technol. 14,1570-1577 (1996).
    [CrossRef]

2004 (3)

T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43,L673-L675 (2004).
[CrossRef]

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16,2478-2480 (2004).
[CrossRef]

S. Dupont, A. Beaurain, P. Miska, M. Zegaoui, J.-P. Vilcot, H. W. Li, M. Constant, D. Decoster, and J. Chazelas, "Low-loss InGaAsP/InP submicron optical waveguides fabricated by ICP etching," Electron. Lett. 40,865-866 (2004).
[CrossRef]

2001 (2)

H. Yokoi, T. Mizumoto, H. Masaki, N. Futakuchi, T. Ohtsuka, and Y. Nakano, "Selective oxidation for enhancement of magneto-optic effect in optical isolator with semiconductor guiding layer," Electron. Lett. 37,240-241 (2001).
[CrossRef]

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 40,L383-L385 (2001).
[CrossRef]

2000 (1)

1999 (1)

J. Shibayama, T. Takahashi, J. Yamauchi, and H. Nakano, "Finite-difference time-domain beam propagation method for analysis of three-dimensional optical waveguides," Electron. Lett. 35,1548-1549 (1999).
[CrossRef]

1998 (1)

B. E. Little, J. S. Foresi. G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, HenryI. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390,143 (1997).
[CrossRef]

1996 (1)

C. Vassallo and F. Collino, "Highly efficient absorbing boundary conditions for the beam propagation method," IEEE/OSAJ. Lightwave Technol. 14,1570-1577 (1996).
[CrossRef]

1995 (1)

Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, "Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure," Electron. Lett. 31,560-562 (1995).
[CrossRef]

1994 (1)

J. P. Bérenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114,185-200 (1994).
[CrossRef]

Electron. Lett. (4)

S. Dupont, A. Beaurain, P. Miska, M. Zegaoui, J.-P. Vilcot, H. W. Li, M. Constant, D. Decoster, and J. Chazelas, "Low-loss InGaAsP/InP submicron optical waveguides fabricated by ICP etching," Electron. Lett. 40,865-866 (2004).
[CrossRef]

Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, "Record low-threshold index-guided InGaAs/GaAlAs vertical-cavity surface-emitting laser with a native oxide confinement structure," Electron. Lett. 31,560-562 (1995).
[CrossRef]

H. Yokoi, T. Mizumoto, H. Masaki, N. Futakuchi, T. Ohtsuka, and Y. Nakano, "Selective oxidation for enhancement of magneto-optic effect in optical isolator with semiconductor guiding layer," Electron. Lett. 37,240-241 (2001).
[CrossRef]

J. Shibayama, T. Takahashi, J. Yamauchi, and H. Nakano, "Finite-difference time-domain beam propagation method for analysis of three-dimensional optical waveguides," Electron. Lett. 35,1548-1549 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16,2478-2480 (2004).
[CrossRef]

B. E. Little, J. S. Foresi. G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10,549-551 (1998).
[CrossRef]

J. Comput. Phys. (1)

J. P. Bérenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114,185-200 (1994).
[CrossRef]

J. Lightwave Technol. (2)

C. Vassallo and F. Collino, "Highly efficient absorbing boundary conditions for the beam propagation method," IEEE/OSAJ. Lightwave Technol. 14,1570-1577 (1996).
[CrossRef]

K. Koshiba, Y. Tsuji, and M. Hikari, "Time-domain beam propagation method and its application to photonic crystal circuits," IEEE/OSAJ. Lightwave Technol. 18,102-110 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43,L673-L675 (2004).
[CrossRef]

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 40,L383-L385 (2001).
[CrossRef]

Nature (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, HenryI. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390,143 (1997).
[CrossRef]

Other (3)

M. Fujita, T. Baba, A. Matsutani, F. Koyama, and K. Iga, "A novel GaInAsP microcylinder laser with AlInAs(Ox) claddings," in Proceedings of IPRM (Davos, Switzerland, May 1999), Paper TuB1-5.

N. Iwai, T. Mukaihara, M. Itoh, S. Arakawa, H. Shimizu, and A. Kasukawa, "High reliable, low threshold 1.3μm SL-QW PACIS (p-substrate Al-oxide confined inner stripe) laser array," in Proceedings of IPRM (Davos, Switzerland, May 1999), Paper TuB1-6.

V. Emerencio de Nascimento and B. H. Viana Borges, "A new time domain BPM based on locally one dimensional method," in Proceedings of Microwave and Optoelectronics (July 2005), pp. 245-248.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Structures of (a) InP based rib waveguide with InAlAs cladding and (b) InP based photonic wire waveguide with InAlAs oxide cladding.

Fig. 2
Fig. 2

(a) Top view and (b) cross-sectional view of the 0.5-μm-wide micro bend with a 3-μm bend radius. The 300-nm-height InGaAsP core (λg = 1.25 μm) was assumed. The refractive indexes (nclad) were 3.2 for the InP rib waveguide and 2.4 for the InP photonic wire waveguide.

Fig. 3.
Fig. 3.

(a). Top view and (b) cross-sectional view of the TD-BPM simulated electrical field distribution in the InP rib waveguide.

Fig. 4.
Fig. 4.

(a). Top view and (b) cross-sectional view of the TD-BPM simulated electrical field distribution in the InP photonic wire waveguide.

Fig. 5.
Fig. 5.

U-bend losses of the InP rib waveguide and the InP photonic wire as a function of hclad.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ ϕ t = 2 ϕ x 2 + 2 ϕ y 2 + 2 ϕ z 2 + νϕ
σ 2 j ωn 2 c 2 , ν ω 2 n 2 c 2
1 3 σ ϕ t = 1 2 ( δ x 2 ϕ n + 1 3 + δ x 2 ϕ n + 1 3 νϕ n + 1 3 + 1 3 νϕ n )
1 3 σ ϕ t = 1 2 ( δ y 2 ϕ n + 2 3 + δ y 2 ϕ n + 1 3 + 1 3 νϕ n + 2 3 + 1 3 νϕ n + 1 3 )
1 3 σ ϕ t = 1 2 ( δ z 2 ϕ n + 1 + δ z 2 ϕ n + 2 3 + 1 3 νϕ n + 1 + 1 3 νϕ n + 2 3 )
( σ Δ t 1 2 δ x 2 1 6 ν ) ϕ n + 1 3 = ( σ Δ t + 1 2 δ x 2 + 1 6 ν ) ϕ n .
x ( σ ) = 0 σ [ 1 jP ( σ ) ]
P ( σ ) 3 c 2 ω 0 nd ( σ d ) 2 ln 1 R
δ x 2 ϕ i = 1 ( Δ x ) 2 2 2 jP i jP i + 1 [ ϕ i + 1 ϕ i 1 jP i + 1 ϕ i ϕ i 1 1 jP i ] .

Metrics