Abstract

For the pulsed injection of liquid ethanol into supercritical CO2 inside an optically accessible chamber, for the first time to the best of our knowledge the spatially and temporally resolving linear Raman scattering technique was used to simultaneously determine the mole fraction and the corresponding phase state in the ethanol jet. The mole fraction was identified by calculating the ratio of the C-H band Raman signal (2950 cm-1) of ethanol and the CO2 Raman signal. The magnitude of this ratio was found to be phase state sensitive. Thus, the phase state of the mixture of ethanol and CO2 could be classified as being homogeneous liquid, homogeneous supercritical or not yet homogeneously mixed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Joung and M. Perrut, "Particle design using supercritical fluids: Literature and patent survey," J. Supercrit. Fluids 20, 179-219 (2001).
    [CrossRef]
  2. Z. Knez and E. Weidner, "Particles formation and particle design using supercritical fluids," Curr. Opin. Solid State Mater. Sci. 7, 353-361 (2003).
    [CrossRef]
  3. E. Reverchon and R. Adami, "Nanomaterials and Supercritical Fluids," J. Supercrit. Fluids 37, 1-22 (2006).
    [CrossRef]
  4. E. Reverchon, G. Caputo, and I. De Marco, "Role of phase behavior and atomization in the supercritical antisolvent precipitation," Ind. Eng. Chem. Res. 42, 6406-6414 (2003).
    [CrossRef]
  5. K. Suzuki and H. Sue, "Isothermal vapor liquid equilibrium data for binary systems at high pressures: Carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane-1-propanol, ethane-ethanol, and ethane-1-propanol systems," J. Chem. Eng. Data 35, 63-66 (1990).
    [CrossRef]
  6. C. Day, C. J. Chang, and C-Y. Chen, "Phase equilibrium of ethanol + CO2 and acetone + CO2 at elevated pressures," J. Chem. Eng. Data 41,839-843 (1996).
    [CrossRef]
  7. B. E. Poling et al., The properties of gases and liquids (McGraw-Hill, 2001)
  8. A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, A. Soika, "Investigation of the combustion process in an auxiliary heating system using dual-pump CARS," J. Raman Spectrosc. 37, 633-640 (2006).
    [CrossRef]
  9. A. Braeuer, R. Schatz, E. Schluecker, A. Leipertz, "Characterisation of the spray dynamics in the pulsed anisolvent spray precipitator," in proceedings of ICLASS (Kyoto, Japan, 2006) paper ID ICLASS06-274.
  10. G. Herzberg, Molecular spectra and molecular structure, (Van Nostrand Company, New York 1966).
  11. M. Lapp and C. M. Penney, eds., Laser Raman Gas Diagnostics, (Plenum Press, New York 1974).
  12. A. C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach, Amsterdam 1996).
  13. K. Kohse-Höinghaus and J. B. Jeffries, Applied combustion diagnostics, (Taylor and Francis, New York 2002).
  14. T. Müller, G. Grünefeld, V. Beushausen, "High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering," Appl. Phys. B. 70,155-158 (2000).
    [CrossRef]
  15. P. C. Miles, "Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines," Appl. Opt. 38, 1714-1732 (1999).
    [CrossRef]
  16. M. Taschek, J. Egermann, S. Schwarz, and A. Leipertz, "Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy," Appl. Opt. 44, 6606-6615 (2005).
    [CrossRef] [PubMed]
  17. M. C. Weikl, F. Beyrau, J. Kiefer, T. Seeger, and A. Leipertz, "Combined coherent anti-Stokes Raman spectroscopy and linear Raman spectroscopy for simultaneous temperature and multiple species measurements," Opt. Lett. 31, 1908-1910 (2006).
    [CrossRef] [PubMed]
  18. A. Stratmann and G. Schweiger, "Fluid phase equilibria of ethanol and carbon dioxide mixtures with concentration measurements by Raman spectroscopy," Appl. Spectrosc. 56, 783-788 (2002).
    [CrossRef]
  19. H. W. Schrötter and H. W. Klöckner, Raman spectroscopy of gases and liquids, (Springer, 1979).

2006 (3)

E. Reverchon and R. Adami, "Nanomaterials and Supercritical Fluids," J. Supercrit. Fluids 37, 1-22 (2006).
[CrossRef]

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, A. Soika, "Investigation of the combustion process in an auxiliary heating system using dual-pump CARS," J. Raman Spectrosc. 37, 633-640 (2006).
[CrossRef]

M. C. Weikl, F. Beyrau, J. Kiefer, T. Seeger, and A. Leipertz, "Combined coherent anti-Stokes Raman spectroscopy and linear Raman spectroscopy for simultaneous temperature and multiple species measurements," Opt. Lett. 31, 1908-1910 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (2)

E. Reverchon, G. Caputo, and I. De Marco, "Role of phase behavior and atomization in the supercritical antisolvent precipitation," Ind. Eng. Chem. Res. 42, 6406-6414 (2003).
[CrossRef]

Z. Knez and E. Weidner, "Particles formation and particle design using supercritical fluids," Curr. Opin. Solid State Mater. Sci. 7, 353-361 (2003).
[CrossRef]

2002 (1)

2001 (1)

J. Joung and M. Perrut, "Particle design using supercritical fluids: Literature and patent survey," J. Supercrit. Fluids 20, 179-219 (2001).
[CrossRef]

2000 (1)

T. Müller, G. Grünefeld, V. Beushausen, "High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering," Appl. Phys. B. 70,155-158 (2000).
[CrossRef]

1999 (1)

1996 (1)

C. Day, C. J. Chang, and C-Y. Chen, "Phase equilibrium of ethanol + CO2 and acetone + CO2 at elevated pressures," J. Chem. Eng. Data 41,839-843 (1996).
[CrossRef]

1990 (1)

K. Suzuki and H. Sue, "Isothermal vapor liquid equilibrium data for binary systems at high pressures: Carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane-1-propanol, ethane-ethanol, and ethane-1-propanol systems," J. Chem. Eng. Data 35, 63-66 (1990).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B. (1)

T. Müller, G. Grünefeld, V. Beushausen, "High-precision measurement of the temperature of methanol and ethanol droplets using spontaneous Raman scattering," Appl. Phys. B. 70,155-158 (2000).
[CrossRef]

Appl. Spectrosc. (1)

Curr. Opin. Solid State Mater. Sci. (1)

Z. Knez and E. Weidner, "Particles formation and particle design using supercritical fluids," Curr. Opin. Solid State Mater. Sci. 7, 353-361 (2003).
[CrossRef]

Ind. Eng. Chem. Res. (1)

E. Reverchon, G. Caputo, and I. De Marco, "Role of phase behavior and atomization in the supercritical antisolvent precipitation," Ind. Eng. Chem. Res. 42, 6406-6414 (2003).
[CrossRef]

J. Chem. Eng. Data (2)

K. Suzuki and H. Sue, "Isothermal vapor liquid equilibrium data for binary systems at high pressures: Carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-1-propanol, methane-ethanol, methane-1-propanol, ethane-ethanol, and ethane-1-propanol systems," J. Chem. Eng. Data 35, 63-66 (1990).
[CrossRef]

C. Day, C. J. Chang, and C-Y. Chen, "Phase equilibrium of ethanol + CO2 and acetone + CO2 at elevated pressures," J. Chem. Eng. Data 41,839-843 (1996).
[CrossRef]

J. Raman Spectrosc. (1)

A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, A. Soika, "Investigation of the combustion process in an auxiliary heating system using dual-pump CARS," J. Raman Spectrosc. 37, 633-640 (2006).
[CrossRef]

J. Supercrit. Fluids (2)

E. Reverchon and R. Adami, "Nanomaterials and Supercritical Fluids," J. Supercrit. Fluids 37, 1-22 (2006).
[CrossRef]

J. Joung and M. Perrut, "Particle design using supercritical fluids: Literature and patent survey," J. Supercrit. Fluids 20, 179-219 (2001).
[CrossRef]

Opt. Lett. (1)

Other (7)

H. W. Schrötter and H. W. Klöckner, Raman spectroscopy of gases and liquids, (Springer, 1979).

A. Braeuer, R. Schatz, E. Schluecker, A. Leipertz, "Characterisation of the spray dynamics in the pulsed anisolvent spray precipitator," in proceedings of ICLASS (Kyoto, Japan, 2006) paper ID ICLASS06-274.

G. Herzberg, Molecular spectra and molecular structure, (Van Nostrand Company, New York 1966).

M. Lapp and C. M. Penney, eds., Laser Raman Gas Diagnostics, (Plenum Press, New York 1974).

A. C. Eckbreth, Laser diagnostics for combustion temperature and species (Gordon and Breach, Amsterdam 1996).

K. Kohse-Höinghaus and J. B. Jeffries, Applied combustion diagnostics, (Taylor and Francis, New York 2002).

B. E. Poling et al., The properties of gases and liquids (McGraw-Hill, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

px phase diagram of a binary ethanol/CO2 system for 313 K. Discs from Suzuki et Saito [5], squares from Day et al. [6].

Fig. 2.
Fig. 2.

Experimental Raman setup; L: Nd:YAG-laser, SL: spherical lens, M: mirror, BS: beam splitter ,IS: imaging spectrograph, IC: ICCD camera, LPF: long pass filter

Fig. 3.
Fig. 3.

(a). Raman spectra of a homogeneous EtOH/CO2 mixture with a mole fraction of xCO2 = 0.68 at two different temperatures above the MCP; supercritical (black line) and liquid (gray line) (b). Mole fraction calibration of the peak intensity ratio of the C-H Raman signal around 2950 cm-1 to the CO2 Raman signal for homogeneous liquid mixtures (squares) and supercritical mixtures (discs)

Fig. 4.
Fig. 4.

Mole fraction and corresponding phase state in dependence on the radial position 5 mm and 7 mm downstream the nozzle exit for an injection pressure of 35 MPa and a chamber pressure of 12.5 MPa at 313 K. A spray image by elastic light scattering is inserted into the figure for orientation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x CO 2 = n C O 2 ( n CO 2 + n Et OH ) .

Metrics