R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]
T. Fujisawa and M. Koshiba, “Theoretical Investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photon. Technol. Lett. 18, 1246–1248 (2006).
[Crossref]
J. Xiao and X. Sun, “A modified full-vectorial finite-difference beam propagation method based on H-fields for optical waveguides with step-index profiles,” Opt. Commun. 266, 505–511 (2006).
[Crossref]
T. Fujisawa and M. Koshiba, “Polarization-independent optical directional coupler based on slot waveguides,” Opt. Lett. 31, 56–58 (2006).
[Crossref]
[PubMed]
T. Fujisasw and M. Koshiba, “All-optical logic gates based on nonlinear slot-waveguide coupler,” J. Opt. Soc. Am. B 23, 684–691(2006).
[Crossref]
B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
C. A. Barrios and M. Lipson, “electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13, 10092–10101 (2005).
[Crossref]
[PubMed]
S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]
J. Xiao, X. Sun, and M. Zhang, “Vectorial analysis of optical waveguides by the mapped Galerkin method based on E fields,” J. Opt. Soc. Am. B 21, 798–805 (2004).
[Crossref]
V. R. Almeida, Q. Xu, C. A. barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining in nanometer-size low-refractive index material,” Opt. Lett. 29, 1626–1628 (2004).
[Crossref]
[PubMed]
B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11, 575–577 (1999).
[Crossref]
K. C. Lin and W. Y. Lee, “Guided-wave 1.30/1.55μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996).
[Crossref]
L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]
W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
[Crossref]
G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
[Crossref]
A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[Crossref]
C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[Crossref]
N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30μm and 1.55μm,” Electron. Lett. 26, 102–103 (1990).
[Crossref]
V. R. Almeida, Q. Xu, C. A. barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining in nanometer-size low-refractive index material,” Opt. Lett. 29, 1626–1628 (2004).
[Crossref]
[PubMed]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[Crossref]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30μm and 1.55μm,” Electron. Lett. 26, 102–103 (1990).
[Crossref]
S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]
G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
[Crossref]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[Crossref]
W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
[Crossref]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11, 575–577 (1999).
[Crossref]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
K. C. Lin and W. Y. Lee, “Guided-wave 1.30/1.55μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996).
[Crossref]
B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11, 575–577 (1999).
[Crossref]
B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11, 575–577 (1999).
[Crossref]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
K. C. Lin and W. Y. Lee, “Guided-wave 1.30/1.55μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996).
[Crossref]
C. A. Barrios and M. Lipson, “electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13, 10092–10101 (2005).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining in nanometer-size low-refractive index material,” Opt. Lett. 29, 1626–1628 (2004).
[Crossref]
[PubMed]
V. R. Almeida, Q. Xu, C. A. barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[Crossref]
[PubMed]
B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11, 575–577 (1999).
[Crossref]
L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]
A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[Crossref]
B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11, 575–577 (1999).
[Crossref]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
L. B. Soldano and E. C. M. Pennings, “Optical multimode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]
R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[Crossref]
A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[Crossref]
S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]
S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11, 575–577 (1999).
[Crossref]
W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
[Crossref]
Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining in nanometer-size low-refractive index material,” Opt. Lett. 29, 1626–1628 (2004).
[Crossref]
[PubMed]
V. R. Almeida, Q. Xu, C. A. barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[Crossref]
[PubMed]
N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30μm and 1.55μm,” Electron. Lett. 26, 102–103 (1990).
[Crossref]
N. Goto and G. L. Yip, “Y-branch wavelength multi-demultiplexer for λ=1.30μm and 1.55μm,” Electron. Lett. 26, 102–103 (1990).
[Crossref]
K. C. Lin and W. Y. Lee, “Guided-wave 1.30/1.55μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996).
[Crossref]
W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron. 29, 2639–2649 (1993).
[Crossref]
G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron. 28, 363–370 (1992).
[Crossref]
C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[Crossref]
R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]
T. Fujisawa and M. Koshiba, “Theoretical Investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures,” IEEE Photon. Technol. Lett. 18, 1246–1248 (2006).
[Crossref]
B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, “Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photon. Technol. Lett. 11, 575–577 (1999).
[Crossref]
A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, “A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991).
[Crossref]
J. Xiao and X. Sun, “A modified full-vectorial finite-difference beam propagation method based on H-fields for optical waveguides with step-index profiles,” Opt. Commun. 266, 505–511 (2006).
[Crossref]
S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1×2 single-mode 1300/1550nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Commun. 232, 371–379 (2004).
[Crossref]
F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15, 4977–4993 (2007).
[Crossref]
[PubMed]
T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216–5226 (2005).
[Crossref]
[PubMed]
C. A. Barrios and M. Lipson, “electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13, 10092–10101 (2005).
[Crossref]
[PubMed]
T. Fujisawa and M. Koshiba, “Polarization-independent optical directional coupler based on slot waveguides,” Opt. Lett. 31, 56–58 (2006).
[Crossref]
[PubMed]
V. R. Almeida, Q. Xu, C. A. barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[Crossref]
[PubMed]
Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining in nanometer-size low-refractive index material,” Opt. Lett. 29, 1626–1628 (2004).
[Crossref]
[PubMed]