Abstract

We present here a possible high-flux photon-pair source constructed by single lithium niobate optical superlattice (OSL) with a combined quasi-periodically and periodically poled structure, which is from the principle of electrically induced parametric down conversion (PDC) after second-harmonic generation (SHG), predicted by the united theory developed in this paper, in which SHG, PDC and electro-optic (EO) effect are comparably treated as two-order nonlinear effects. In the OSL, the e-polarized fundamental frequency photons are first converted to double frequency ones with the same polarization; then the PDC process is triggered by EO effect when the fundamental frequency photons are almost exhausted; finally, the double frequency photons are converted again to a series of two-photon pair of fundamental wave. It is demonstrated that at 100 °C, in a 20.2mm long OSL with a 30V / mm applied electric field, a 100MW/cm2, 1080 nm laser beam can be translated to a flux of high-purity two-photon pairs with a conversion efficiency close to 100%; and for a longer OSL the pump intensity can be further lowered. The device can also act as an ultra-low field electro-optic switch.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
    [CrossRef] [PubMed]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
    [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
    [CrossRef] [PubMed]
  4. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287 (1993).
    [CrossRef] [PubMed]
  5. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083 (1995).
    [CrossRef] [PubMed]
  6. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921 (1988).
    [CrossRef] [PubMed]
  7. Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50 (1988).
    [CrossRef] [PubMed]
  8. J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495 (1990).
    [CrossRef] [PubMed]
  9. F. De Martini, “Amplification of quantum entanglement,” Phys. Rev. Lett. 81, 2842 (1998).
    [CrossRef]
  10. X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
    [CrossRef] [PubMed]
  11. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
    [CrossRef]
  12. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
    [CrossRef] [PubMed]
  13. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  14. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
    [CrossRef]
  15. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
    [CrossRef]
  16. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367(2001).
    [CrossRef]
  17. J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
    [CrossRef] [PubMed]
  18. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
    [CrossRef]
  19. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834 (1997).
    [CrossRef]
  20. S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883 (1998).
    [CrossRef]
  21. I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency generation and difference-frequency generation processes,” J. Opt. Soc. Am. B 14, 3368 (1997).
    [CrossRef]
  22. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663 (1997).
    [CrossRef]
  23. K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197 (1997).
    [CrossRef]
  24. M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide auasi-phase-matched nonlinear optic wavelength conversion devices,” Bull. Mater. Sci. 22, 413 (1999).
    [CrossRef]
  25. S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843 (1997).
    [CrossRef]
  26. C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu, and N. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899 (2001).
    [CrossRef]
  27. C. J. K. Virmani ,Plasma Phys.15, 1039 (1973).
    [CrossRef]
  28. G. Blau, M. Cairone, P. A. Chollet, and F. Kajzar, “Electro-optic modulation and second-harmonic generation through grating-induced resonant excitation of guided modes,” Proc. SPIE 2852, 237 (1996).
    [CrossRef]
  29. N. O’Brien, M. Missey, P. Powers, V. ominic, and K. L. Schepler, “Electro-optical spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett. 24, 1750 (1999).
    [CrossRef]
  30. K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Commun. 203, 163 (2002).
    [CrossRef]
  31. Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
    [CrossRef]
  32. F. Xu, J. Liao, X. Zhang, J. He, H. Wang, and N. Ming, “Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice,” Phys. Rev. A 68, 033808 (2003).
    [CrossRef]
  33. F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
    [CrossRef] [PubMed]
  34. C. Huang, Q. Wang, and Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741 (2005).
    [CrossRef]
  35. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
    [CrossRef]
  36. W. She and W. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195, 303 (2001).
    [CrossRef]
  37. G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Exp. 14, 5535 (2006).
    [CrossRef]
  38. Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719 (2000).
    [CrossRef]
  39. C. Huang, Y. Wang, and Y. Zhu, “Effect of electro-optic modulation on coupled quasi-phase-matched frequency conversion,” Appl. Opt. 44, 4980 (2005).
    [CrossRef] [PubMed]
  40. A. Yariv, Quantum Electronics (John Wiley & Sons, Inc., New York, 1975) Chaps.16-17.
  41. G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
    [CrossRef]
  42. Keren Fradkin-Kashi and Ady Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649 (1999).
    [CrossRef]
  43. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. and Quant. Electron. 16, 373 (1984).
    [CrossRef]
  44. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995) p.1071.
  45. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart, ” Phys. Rev. Lett. 81, 3563 (1998).
    [CrossRef]
  46. Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28, 1460 (2003).
    [CrossRef] [PubMed]
  47. K. S. Abedin, T. Tsuritani, M. Sato, H. Ito, K. Shimamura, and T. Fukuda, “Integrated electro-optic Q switching in a domain-inverted Nd:LiTaO3,” Opt. Lett. 20, 1985 (1995).
    [CrossRef] [PubMed]

2006 (1)

G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Exp. 14, 5535 (2006).
[CrossRef]

2005 (2)

C. Huang, Q. Wang, and Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741 (2005).
[CrossRef]

C. Huang, Y. Wang, and Y. Zhu, “Effect of electro-optic modulation on coupled quasi-phase-matched frequency conversion,” Appl. Opt. 44, 4980 (2005).
[CrossRef] [PubMed]

2004 (3)

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

2003 (5)

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
[CrossRef]

F. Xu, J. Liao, X. Zhang, J. He, H. Wang, and N. Ming, “Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice,” Phys. Rev. A 68, 033808 (2003).
[CrossRef]

F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
[CrossRef] [PubMed]

Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28, 1460 (2003).
[CrossRef] [PubMed]

2002 (2)

K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Commun. 203, 163 (2002).
[CrossRef]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef] [PubMed]

2001 (5)

C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu, and N. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899 (2001).
[CrossRef]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367(2001).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

W. She and W. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195, 303 (2001).
[CrossRef]

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

2000 (1)

Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

1999 (4)

Keren Fradkin-Kashi and Ady Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide auasi-phase-matched nonlinear optic wavelength conversion devices,” Bull. Mater. Sci. 22, 413 (1999).
[CrossRef]

N. O’Brien, M. Missey, P. Powers, V. ominic, and K. L. Schepler, “Electro-optical spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett. 24, 1750 (1999).
[CrossRef]

1998 (3)

F. De Martini, “Amplification of quantum entanglement,” Phys. Rev. Lett. 81, 2842 (1998).
[CrossRef]

S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883 (1998).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart, ” Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

1997 (6)

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197 (1997).
[CrossRef]

I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Kaino, “All-optical switching by use of cascading of phase-matched sum-frequency generation and difference-frequency generation processes,” J. Opt. Soc. Am. B 14, 3368 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834 (1997).
[CrossRef]

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843 (1997).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

1996 (1)

G. Blau, M. Cairone, P. A. Chollet, and F. Kajzar, “Electro-optic modulation and second-harmonic generation through grating-induced resonant excitation of guided modes,” Proc. SPIE 2852, 237 (1996).
[CrossRef]

1995 (3)

K. S. Abedin, T. Tsuritani, M. Sato, H. Ito, K. Shimamura, and T. Fukuda, “Integrated electro-optic Q switching in a domain-inverted Nd:LiTaO3,” Opt. Lett. 20, 1985 (1995).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083 (1995).
[CrossRef] [PubMed]

1993 (2)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287 (1993).
[CrossRef] [PubMed]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

1990 (1)

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495 (1990).
[CrossRef] [PubMed]

1988 (2)

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921 (1988).
[CrossRef] [PubMed]

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50 (1988).
[CrossRef] [PubMed]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. and Quant. Electron. 16, 373 (1984).
[CrossRef]

Abedin, K. S.

Alley, C. O.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921 (1988).
[CrossRef] [PubMed]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

Arie, A.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
[CrossRef]

Arie, Ady

Keren Fradkin-Kashi and Ady Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649 (1999).
[CrossRef]

Aschieri, P.

Asobe, M.

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, and F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197 (1997).
[CrossRef]

Banaszek, K.

Barenco, A.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083 (1995).
[CrossRef] [PubMed]

Batchko, R. G.

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
[CrossRef] [PubMed]

Blau, G.

G. Blau, M. Cairone, P. A. Chollet, and F. Kajzar, “Electro-optic modulation and second-harmonic generation through grating-induced resonant excitation of guided modes,” Proc. SPIE 2852, 237 (1996).
[CrossRef]

Bosenberg, W. R.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart, ” Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

Byer, R. L.

Cairone, M.

G. Blau, M. Cairone, P. A. Chollet, and F. Kajzar, “Electro-optic modulation and second-harmonic generation through grating-induced resonant excitation of guided modes,” Proc. SPIE 2852, 237 (1996).
[CrossRef]

Canalias, C.

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
[CrossRef]

Chang, K.

K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Commun. 203, 163 (2002).
[CrossRef]

Chen, Y.

Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
[CrossRef]

Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
[CrossRef]

K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Commun. 203, 163 (2002).
[CrossRef]

Chen, Y. H.

Chiang, A.

K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Commun. 203, 163 (2002).
[CrossRef]

Chollet, P. A.

G. Blau, M. Cairone, P. A. Chollet, and F. Kajzar, “Electro-optic modulation and second-harmonic generation through grating-induced resonant excitation of guided modes,” Proc. SPIE 2852, 237 (1996).
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

De Martini, F.

F. De Martini, “Amplification of quantum entanglement,” Phys. Rev. Lett. 81, 2842 (1998).
[CrossRef]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

Deutsch, D.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083 (1995).
[CrossRef] [PubMed]

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. and Quant. Electron. 16, 373 (1984).
[CrossRef]

Eger, D.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
[CrossRef]

Ekert, A.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083 (1995).
[CrossRef] [PubMed]

Ekert, A. K.

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287 (1993).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

Fan, F.

Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
[CrossRef]

Fejer, M. M.

Fiorentino, M.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Fradkin-Kashi, Keren

Keren Fradkin-Kashi and Ady Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649 (1999).
[CrossRef]

Fragemann, A.

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
[CrossRef]

Fujimura, M.

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide auasi-phase-matched nonlinear optic wavelength conversion devices,” Bull. Mater. Sci. 22, 413 (1999).
[CrossRef]

Fukuda, T.

Gisin, N.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart, ” Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

Guo, C.

Hadi, K. El

He, J.

F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
[CrossRef] [PubMed]

F. Xu, J. Liao, X. Zhang, J. He, H. Wang, and N. Ming, “Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice,” Phys. Rev. A 68, 033808 (2003).
[CrossRef]

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

Horne, M. A.

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287 (1993).
[CrossRef] [PubMed]

Huang, C.

C. Huang, Q. Wang, and Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741 (2005).
[CrossRef]

C. Huang, Y. Wang, and Y. Zhu, “Effect of electro-optic modulation on coupled quasi-phase-matched frequency conversion,” Appl. Opt. 44, 4980 (2005).
[CrossRef] [PubMed]

Huang, Y.

Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
[CrossRef]

K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Commun. 203, 163 (2002).
[CrossRef]

Huang, Y. C.

Ito, H.

Itoh, H.

Jing, J.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef] [PubMed]

Jozsa, R.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083 (1995).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

Kaino, T.

Kajzar, F.

G. Blau, M. Cairone, P. A. Chollet, and F. Kajzar, “Electro-optic modulation and second-harmonic generation through grating-induced resonant excitation of guided modes,” Proc. SPIE 2852, 237 (1996).
[CrossRef]

Karlsson, A.

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
[CrossRef]

Karlsson, H.

Katz, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
[CrossRef]

Kuklewicz, C. E.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Lan, Y.

Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
[CrossRef]

Laurell, F.

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. and Quant. Electron. 16, 373 (1984).
[CrossRef]

Lee, W.

W. She and W. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195, 303 (2001).
[CrossRef]

Li, X.

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef] [PubMed]

Liao, J.

F. Xu, J. Liao, X. Zhang, J. He, H. Wang, and N. Ming, “Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice,” Phys. Rev. A 68, 033808 (2003).
[CrossRef]

F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
[CrossRef] [PubMed]

Lin, T.

K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Commun. 203, 163 (2002).
[CrossRef]

Lin, Y.

Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
[CrossRef]

Liu, Z.

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

Ljunggren, D.

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
[CrossRef]

Lu, Y.

Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Luo, G.

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

Mahal, V.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
[CrossRef]

Mandel, L.

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50 (1988).
[CrossRef] [PubMed]

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995) p.1071.

Marsden, P.

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

Micheli, M. De

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

Micheli, M. P. De

Miller, G. D.

Ming, N.

F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
[CrossRef] [PubMed]

F. Xu, J. Liao, X. Zhang, J. He, H. Wang, and N. Ming, “Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice,” Phys. Rev. A 68, 033808 (2003).
[CrossRef]

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu, and N. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899 (2001).
[CrossRef]

Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843 (1997).
[CrossRef]

Missey, M.

Myers, L. E.

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

Nishihara, H.

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide auasi-phase-matched nonlinear optic wavelength conversion devices,” Bull. Mater. Sci. 22, 413 (1999).
[CrossRef]

O’Brien, N.

ominic, V.

Oron, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
[CrossRef]

Ostrowski, D. B.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

Ostrowsky, D. B.

Ou, Z. Y.

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50 (1988).
[CrossRef] [PubMed]

Pan, Q.

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef] [PubMed]

Pasiskevicius, V.

Pelton, M.

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
[CrossRef]

Peng, K.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef] [PubMed]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

Powers, P.

Rarity, J. G.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495 (1990).
[CrossRef] [PubMed]

Rosenman, G.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
[CrossRef]

Sato, M.

Schepler, K. L.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Shapiro, J. H.

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

She, W.

G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Exp. 14, 5535 (2006).
[CrossRef]

W. She and W. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195, 303 (2001).
[CrossRef]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Shih, Y. H.

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921 (1988).
[CrossRef] [PubMed]

Shimamura, K.

Shy, J.

Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
[CrossRef]

Skliar, A.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
[CrossRef]

Suhara, T.

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide auasi-phase-matched nonlinear optic wavelength conversion devices,” Bull. Mater. Sci. 22, 413 (1999).
[CrossRef]

Sundheimer, M.

Tanzilli, S.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

Tapster, P. R.

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495 (1990).
[CrossRef] [PubMed]

Tengner, M.

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
[CrossRef]

Tittel, W.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart, ” Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

Tsuritani, T.

Tulloch, W. M.

U’Ren, A. B.

Virmani, C. J. K.

C. J. K. Virmani ,Plasma Phys.15, 1039 (1973).
[CrossRef]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

Walmsley, I. A.

Wan, Z.

Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Wang, H.

G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Exp. 14, 5535 (2006).
[CrossRef]

F. Xu, J. Liao, X. Zhang, J. He, H. Wang, and N. Ming, “Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice,” Phys. Rev. A 68, 033808 (2003).
[CrossRef]

F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
[CrossRef] [PubMed]

C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu, and N. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899 (2001).
[CrossRef]

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

Wang, Q.

C. Huang, Q. Wang, and Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741 (2005).
[CrossRef]

Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Wang, S.

Wang, Y.

Wang, Z.

Wei, H.

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Weise, D. R.

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
[CrossRef] [PubMed]

Wolf, E.

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995) p.1071.

Wong, B.

K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Commun. 203, 163 (2002).
[CrossRef]

Wong, F. N. C.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

Xi, Y.

Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

Xie, C.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef] [PubMed]

Xu, F.

F. Xu, J. Liao, X. Zhang, J. He, H. Wang, and N. Ming, “Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice,” Phys. Rev. A 68, 033808 (2003).
[CrossRef]

F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
[CrossRef] [PubMed]

Yan, Y.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, Quantum Electronics (John Wiley & Sons, Inc., New York, 1975) Chaps.16-17.

Yokohama, I.

Yokoo, A.

Zbinden, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart, ” Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287 (1993).
[CrossRef] [PubMed]

Zhang, C.

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu, and N. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899 (2001).
[CrossRef]

Zhang, J.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef] [PubMed]

Zhang, X.

F. Xu, J. Liao, X. Zhang, J. He, H. Wang, and N. Ming, “Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice,” Phys. Rev. A 68, 033808 (2003).
[CrossRef]

Zhao, F.

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

Zheng, G.

G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Exp. 14, 5535 (2006).
[CrossRef]

Zhu, S.

F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
[CrossRef] [PubMed]

C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu, and N. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899 (2001).
[CrossRef]

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843 (1997).
[CrossRef]

Zhu, Y.

C. Huang, Q. Wang, and Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741 (2005).
[CrossRef]

C. Huang, Y. Wang, and Y. Zhu, “Effect of electro-optic modulation on coupled quasi-phase-matched frequency conversion,” Appl. Opt. 44, 4980 (2005).
[CrossRef] [PubMed]

F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
[CrossRef] [PubMed]

C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu, and N. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899 (2001).
[CrossRef]

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843 (1997).
[CrossRef]

Zukowski, M.

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287 (1993).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Huang, Q. Wang, and Y. Zhu, “Cascaded frequency doubling and electro-optic coupling in a single optical superlattice,” Appl. Phys. B 80, 741 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719 (2000).
[CrossRef]

G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006 (2001).
[CrossRef]

Bull. Mater. Sci. (1)

M. Fujimura, T. Suhara, and H. Nishihara, “Periodically domain-inverted LiNbO3 for waveguide auasi-phase-matched nonlinear optic wavelength conversion devices,” Bull. Mater. Sci. 22, 413 (1999).
[CrossRef]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, “Highly efficient photo-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

Keren Fradkin-Kashi and Ady Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649 (1999).
[CrossRef]

L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. and Quant. Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. and Quant. Electron. 16, 373 (1984).
[CrossRef]

Opt. Commun. (4)

W. She and W. Lee, “Wave coupling theory of linear electrooptic effect,” Opt. Commun. 195, 303 (2001).
[CrossRef]

K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, “Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate,” Opt. Commun. 203, 163 (2002).
[CrossRef]

Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, “Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate,” Opt. Commun. 223, 417 (2003).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265 (1997).
[CrossRef]

Opt. Exp. (2)

M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Exp. 12, 3573 (2004).
[CrossRef]

G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Exp. 14, 5535 (2006).
[CrossRef]

Opt. Lett. (8)

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834 (1997).
[CrossRef]

S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883 (1998).
[CrossRef]

N. O’Brien, M. Missey, P. Powers, V. ominic, and K. L. Schepler, “Electro-optical spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator,” Opt. Lett. 24, 1750 (1999).
[CrossRef]

C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu, and N. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899 (2001).
[CrossRef]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367(2001).
[CrossRef]

F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, and N. Ming, “Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices,” Opt. Lett. 28, 429 (2003).
[CrossRef] [PubMed]

Y. H. Chen and Y. C. Huang, “Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch,” Opt. Lett. 28, 1460 (2003).
[CrossRef] [PubMed]

K. S. Abedin, T. Tsuritani, M. Sato, H. Ito, K. Shimamura, and T. Fukuda, “Integrated electro-optic Q switching in a domain-inverted Nd:LiTaO3,” Opt. Lett. 20, 1985 (1995).
[CrossRef] [PubMed]

Phys. Rev. A (4)

F. Xu, J. Liao, X. Zhang, J. He, H. Wang, and N. Ming, “Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice,” Phys. Rev. A 68, 033808 (2003).
[CrossRef]

M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Phys. Rev. Lett. (13)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, and K. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661 (1991).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[CrossRef] [PubMed]

M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287 (1993).
[CrossRef] [PubMed]

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083 (1995).
[CrossRef] [PubMed]

Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921 (1988).
[CrossRef] [PubMed]

Z. Y. Ou and L. Mandel, “Violation of Bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50 (1988).
[CrossRef] [PubMed]

J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum,” Phys. Rev. Lett. 64, 2495 (1990).
[CrossRef] [PubMed]

F. De Martini, “Amplification of quantum entanglement,” Phys. Rev. Lett. 81, 2842 (1998).
[CrossRef]

X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, “Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam,” Phys. Rev. Lett. 88, 047904 (2002).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Violation of Bell inequalities by photons more than 10 km apart, ” Phys. Rev. Lett. 81, 3563 (1998).
[CrossRef]

Proc. SPIE (1)

G. Blau, M. Cairone, P. A. Chollet, and F. Kajzar, “Electro-optic modulation and second-harmonic generation through grating-induced resonant excitation of guided modes,” Proc. SPIE 2852, 237 (1996).
[CrossRef]

Science (1)

S. Zhu, Y. Zhu, and N. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843 (1997).
[CrossRef]

Other (3)

C. J. K. Virmani ,Plasma Phys.15, 1039 (1973).
[CrossRef]

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995) p.1071.

A. Yariv, Quantum Electronics (John Wiley & Sons, Inc., New York, 1975) Chaps.16-17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematic diagram of the SHG, PDC in the OSL controlled by an applied electric field. x , y and z represent three axes of the crystal. The arrows indicate the polarized directions. F is a filter, only allowing e-polarized fundamental wave to pass. Section 1 and 2 represent QPPLN and PPLN, respectively.

Fig. 2.
Fig. 2.

Dependence of normalized intensities of e-polarized pump fundamental wave, e-polarized second harmonic and o-polarized fundamental wave respectively on the length of the crystal with different external electric field. The total length of the OSL is 20.2mm , and the pump intensity is 100MW / cm 2 . Red, green and brown lines represent the intensities of e-polarized pump wave, e-polarized second harmonic and o-polarized fundamental wave, respectively. And the normalized intensity of o-polarized fundamental wave is enlarged by 1000 times.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

d E 1 y ( x ) dx = id 1 ( x ) E 1 z ( x ) e i Δ k a x id 2 ( x ) E 1 y ( x )
+ i ω 1 cn 1 y ( x ) [ d 22 ( x ) E 1 y * ( x ) E 2 y ( x ) e i Δ k c x + d 24 ( x ) E 1 y * ( x ) E 2 z ( x ) e i Δ k d x + d 24 ( x ) E 1 z * ( x ) E 2 y ( x ) e i Δ k e x ] ,
d E 1 z ( x ) dx = id 3 ( x ) E 1 y ( x ) e i Δ k a x id 4 ( x ) E 1 z ( x )
+ i ω 1 cn 1 z ( x ) [ d 32 ( x ) E 1 y * ( x ) E 2 y ( x ) e i Δ k e x + d 33 ( x ) E 1 z * ( x ) E 2 z ( x ) e i Δ k f x ] ,
d E 2 y ( x ) dx = 2 id 5 ( x ) E 2 z ( x ) e i Δ k b x 2 id 6 ( x ) E 2 y ( x )
+ i ω 2 cn 2 y ( x ) [ 1 2 d 22 ( x ) E 1 y ( x ) E 1 y ( x ) e i Δ k c x + d 24 ( x ) E 1 y ( x ) E 1 z ( x ) e i Δ k e x ] ,
d E 2 z ( x ) dx = 2 id 7 ( x ) E 2 y ( x ) e i Δ k b x 2 id 8 ( x ) E 2 z ( x )
+ i ω 2 cn 2 z ( x ) [ 1 2 d 32 ( x ) E 1 y ( x ) E 1 y ( x ) e i Δ k d x + 1 2 d 33 ( x ) E 1 z ( x ) E 1 z ( x ) e i Δ k f x ] ,
Δ k a = k 1 y k 1 z = 2 π λ 1 ( n 1 y n 1 z ) , Δ k b = k 2 y k 2 z = 4 π λ 1 ( n 2 y n 2 z ) ,
Δ k c = 2 k 1 y k 2 y = 4 π λ 1 ( n 1 y n 2 y ) , Δ k d = 2 k 1 y k 2 z = 4 π λ 1 ( n 1 y n 2 z ) ,
Δ k e = k 1 y + k 1 z k 2 y = 2 π λ 1 ( n 1 y + n 1 z 2 n 2 y ) , Δ k f = 2 k 1 z k 2 z = 4 π λ 1 ( n 1 z n 2 z ) ,
d 1 ( x ) = k 0 n 1 y n 1 z 2 r 42 2 E 0 f ( x ) , d 2 ( x ) = k 0 n 1 y 3 r 22 2 E 0 f ( x ) ,
d 3 ( x ) = k 0 n 1 y 2 n 1 z r 42 2 E 0 f ( x ) , d 4 ( x ) = k 0 n 1 z 3 r 32 2 E 0 f ( x ) = 0 ,
d 5 ( x ) = k 0 n 2 y n 2 z 2 r 42 2 E 0 f ( x ) , d 6 ( x ) = k 0 n 2 y 3 r 22 2 E 0 f ( x ) ,
d 7 ( x ) = k 0 n 2 y 2 n 2 z r 42 2 E 0 f ( x ) , d 8 ( x ) = k 0 n 2 z 3 r 32 2 E 0 f ( x ) , = 0
d 22 ( x ) = d 22 f ( x ) , d 24 ( x ) = d 24 f ( x ) , d 32 ( x ) = d 32 f ( x ) , d 33 ( x ) = d 33 f ( x ) ,
dE 1 y ( x ) dx = i k 0 n 1 y n 1 z 2 r 42 E 0 f a 2 E 1 z ( x ) i k 0 n 1 y 3 r 22 E 0 2 f ( x ) E 1 y ( x ) ,
dE 1 z ( x ) dx = i k 0 n 1 y 2 n 1 z r 42 E 0 f a 2 E 1 y ( x ) + 2 f E 1 z * ( x ) E 2 z ( x ) ,
dE 2 z ( x ) dx = i 1 2 κ 4 f E 1 z ( x ) E 1 z ( x ) ,
κ 1 d = d 24 ω 1 c n 1 y , κ 2 f = d 33 ω 1 f f c n 1 z , κ 4 d = d 32 ω 2 c n 2 z , κ 4 f = d 33 ω 2 f f c n 2 z ,
f a = { f 1,0 for QPPLN 0 for PPLN and f f = { f 1,1 for QPPLN f 1 for PPLN ,
d A ˆ ω dt = 2 ig A ˆ ω + A ˆ 2 ω
d A ˆ 2 ω dt = ig A ˆ ω 2 ,
( d < n ̑ ω > dt ) Δ t = 2 ( d < n ˆ 2 ω > dt ) Δ t ,
ħ ω 1 z + ħ ω 1 z = ħ ω 2 z .

Metrics