Abstract

The time behaviour of bright spatial solitons in congruent undoped lithium niobate crystal is experimentally investigated. Full field characterization of the optical wavefront emerging from the crystal during the soliton formation process is performed by digital holographic method. Experimental results of the amplitude and phase maps of the field distribution at the exit face of the crystal allow the real-time monitoring of the evolution of the soliton beam from the application of the external field to the end of the process when the generation of the channel waveguide appears to be stable. The features of the dynamics of the soliton formation are visualized, analyzed and compared to a time-dependent numerical model.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M Segev, B Crossignani, A Yariv, and B Fisher, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
    [CrossRef] [PubMed]
  2. G. C. Duree, J. L. Shultz, G. J. S. Alamo, M. Segev, A. Yariv, B. Crossignani, P. Di Porto, E. Sharp and R. R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev.Lett. 71, 533-536 (1993).
    [CrossRef] [PubMed]
  3. M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crossignani, and P. Di Porto, "Observation of 2-dimensional steady-state photorefractive screening solitons," Electron Lett. 31, 826-827 (1995)
    [CrossRef]
  4. J. Petter and C. Denz, "Guiding and dividing waves with photorefractive solitons," Opt. Commun,  188, 55-61 (2001).
    [CrossRef]
  5. J. W. Fleiscer, T. Carmon, M. Segev, N. K. Efremedis, and D. N. Christodoulides, "Observation of discrete solitons in optically induced real time waveguide arrays," Phys Rev. Lett 90, 023901 (2003).
  6. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85,2193-2195 (2004).
    [CrossRef]
  7. G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
    [CrossRef]
  8. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons," Phys. Rev. A 52, 3095-3100 (1995).
    [CrossRef] [PubMed]
  9. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, "Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals, " Opt. Lett. 28, 1433-1435 (2003).
    [CrossRef] [PubMed]
  10. I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, "Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion" Appl. Phys. Lett. 74, 1487-1488 (1999).
    [CrossRef]
  11. J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high-index waveguides in LiNbO3" Appl. Phys. Lett. 41, 607-608 (1982).
    [CrossRef]
  12. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001).
    [CrossRef] [PubMed]
  13. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005)
    [CrossRef] [PubMed]
  14. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, P. De Natale, M. de Angelis, S. De Nicola, A. Finizio, and G. Pierattini, "In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography," Opt. Express 12, 1832-1842 (2004).
    [CrossRef] [PubMed]
  15. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, "On the origin of internal field in Lithium Niobate crystals directly observed by digital holography," Opt. Express 13, 5416-5423 (2005).
    [CrossRef] [PubMed]
  16. N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev E. 54, 6866-6875 (1996).
    [CrossRef]
  17. A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field," Phys. Rev. A 51, 1520-1531 (1995).
    [CrossRef] [PubMed]
  18. A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522-534 (1998).
    [CrossRef]
  19. M Chauvet, V Coda, M. Maillotte, E. Fazio, and G. Salamo "Large self-deflection of soliton beams in LiNbO3," Opt. Lett. 30, 1977-1979 (2005).
    [CrossRef] [PubMed]

2005 (3)

2004 (2)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85,2193-2195 (2004).
[CrossRef]

S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, P. De Natale, M. de Angelis, S. De Nicola, A. Finizio, and G. Pierattini, "In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography," Opt. Express 12, 1832-1842 (2004).
[CrossRef] [PubMed]

2003 (3)

G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, "Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals, " Opt. Lett. 28, 1433-1435 (2003).
[CrossRef] [PubMed]

J. W. Fleiscer, T. Carmon, M. Segev, N. K. Efremedis, and D. N. Christodoulides, "Observation of discrete solitons in optically induced real time waveguide arrays," Phys Rev. Lett 90, 023901 (2003).

2001 (2)

1999 (1)

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, "Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion" Appl. Phys. Lett. 74, 1487-1488 (1999).
[CrossRef]

1998 (1)

A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522-534 (1998).
[CrossRef]

1996 (1)

N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev E. 54, 6866-6875 (1996).
[CrossRef]

1995 (3)

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field," Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons," Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crossignani, and P. Di Porto, "Observation of 2-dimensional steady-state photorefractive screening solitons," Electron Lett. 31, 826-827 (1995)
[CrossRef]

1993 (1)

G. C. Duree, J. L. Shultz, G. J. S. Alamo, M. Segev, A. Yariv, B. Crossignani, P. Di Porto, E. Sharp and R. R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev.Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

1992 (1)

M Segev, B Crossignani, A Yariv, and B Fisher, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

1982 (1)

J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high-index waveguides in LiNbO3" Appl. Phys. Lett. 41, 607-608 (1982).
[CrossRef]

Appl. Phys. Lett. (3)

I. E. Barry, G. W. Ross, P. G. R. Smith, and R. W. Eason, "Ridge waveguides in lithium niobate fabricated by differential etching following spatially selective domain inversion" Appl. Phys. Lett. 74, 1487-1488 (1999).
[CrossRef]

J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high-index waveguides in LiNbO3" Appl. Phys. Lett. 41, 607-608 (1982).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, "Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides," Appl. Phys. Lett. 85,2193-2195 (2004).
[CrossRef]

Electron Lett. (1)

M. F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crossignani, and P. Di Porto, "Observation of 2-dimensional steady-state photorefractive screening solitons," Electron Lett. 31, 826-827 (1995)
[CrossRef]

Electron. Lett. (1)

G. Couton, H. Maillotte, R. Giust, and M. Chauvet, "Formation of reconfigurable singlemode channel waveguides in LiNbO3 using spatial solitons," Electron. Lett. 39, 286-287 (2003).
[CrossRef]

Opt. Commun (1)

J. Petter and C. Denz, "Guiding and dividing waves with photorefractive solitons," Opt. Commun,  188, 55-61 (2001).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys Rev. Lett (1)

J. W. Fleiscer, T. Carmon, M. Segev, N. K. Efremedis, and D. N. Christodoulides, "Observation of discrete solitons in optically induced real time waveguide arrays," Phys Rev. Lett 90, 023901 (2003).

Phys. Rev E. (1)

N. Fressengeas, J. Maufoy and G. Kugel, "Temporal behaviour of bidimensional photorefractive bright spatial solitons," Phys. Rev E. 54, 6866-6875 (1996).
[CrossRef]

Phys. Rev. A (3)

A. A. Zozulya and D. Z. Anderson, "Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field," Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

A. A. Zozulya, D. Z. Anderson, A. V. Mamaev, and M. Saffman, "Solitary attractors and low-order filamentation in anisotropic self-focusing media," Phys. Rev. A 57, 522-534 (1998).
[CrossRef]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, "Observation of dark photovoltaic spatial solitons," Phys. Rev. A 52, 3095-3100 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M Segev, B Crossignani, A Yariv, and B Fisher, "Spatial solitons in photorefractive media," Phys. Rev. Lett. 68, 923-926 (1992).
[CrossRef] [PubMed]

Phys. Rev.Lett. (1)

G. C. Duree, J. L. Shultz, G. J. S. Alamo, M. Segev, A. Yariv, B. Crossignani, P. Di Porto, E. Sharp and R. R. Neurgaonkar, "Observation of self-trapping of an optical beam due to the photorefractive effect," Phys. Rev.Lett. 71, 533-536 (1993).
[CrossRef] [PubMed]

Supplementary Material (4)

» Media 1: MOV (223 KB)     
» Media 2: MOV (781 KB)     
» Media 3: MOV (255 KB)     
» Media 4: MOV (578 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of set-up used for soliton formation

Fig. 2.
Fig. 2.

Maps of beam intensity during the soliton formation

Fig. 3
Fig. 3

Intensity profile of light beam after and before soliton formation

Fig. 4.
Fig. 4.

Phase maps of laser beam during soliton formation

Fig. 5.
Fig. 5.

(780 KB- 225KB ) Movie of intensity (a) and phase [Media 1] (b) maps during soliton formation [Media 2]

Fig. 6.
Fig. 6.

(250KB-580KB) Movie of simulated intensity (a) and phase [Media 3] (b) maps during soliton formation [Media 4]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Γ ( v , μ ) h ( ξ , η ) r ( ξ , η ) exp [ i π λ d ( ξ 2 + η 2 ) ] exp [ 2 i π ( ξ v + η μ ) ] d ξ d η
A ( x , y ) = abs [ Γ ( x , y ) ] ; ϕ ( x , y ) = arctan Im [ Γ ( x , y ) ] Re [ Γ ( x , y ) ]
E s c ( t ) = ( ( E 0 + E p h ) I I n + 1 I n ( k b T e I Z ) ) × exp [ ( I n t I d T d ) ]
+ E 0 I d + I b I n E p h I I n 1 I n ( k b T e I Z )
[ X i 2 k ( 2 Y 2 + 2 Z 2 ) ] A X Y Z t = i k Δ n b n b A X Y Z t
[ i U X ˜ + 1 2 ( 2 U Y ˜ 2 + 2 U Z ˜ 2 ) ] + f ( t , U 2 ) U = 0
f ( U 2 , t ) = N p h 2 N 2 exp [ ( I d ( 1 + U 2 ) t ) ] 1 exp [ ( I d ( 1 + U 2 ) t ) ] 1 + U 2 ( N 2 D U 2 Z ˜ )
U ( X ˜ = 0 , Y ˜ , Z ˜ ) = I max I b exp ( Y ˜ 2 + Z ˜ 2 ) .

Metrics