Abstract

We implement a photon-counting Optical Time Domain Reflectometer (OTDR) at 1.55μm which exhibits a high 2-point resolution and a high accuracy. It is based on a low temporal-jitter photon-counting module at 1.55μm. This detector is composed of a periodically poled Lithium niobate (PPLN) waveguide, which provides a wavelength conversion from near infrared to visible light, and a low jitter silicon photon-counting detector. With this apparatus, we obtain centimetre resolution over a measurement range of tens of kilometres.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Wegmuller, F. Scholder, and N. Gisin, "Photon-Counting OTDR for Local Birefringence and Fault Analysis in the Metro Environment," J. Lightwave Technol. 22, 390 (2004).
    [CrossRef]
  2. C. G. Bethea, B. F. Levine, S. Cova, and G. Ripamonti, "High-resolution and high-sensitivity optical-time-domain reflectometer," Opt. Lett. 13, 233 (1988).
    [CrossRef] [PubMed]
  3. A. P. Van Devender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51,1433 (2004).
  4. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, "Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,"Opt. Lett. 29,1518 (2004).
    [CrossRef] [PubMed]
  5. M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 µm by means of frequency upconversion," Opt. Lett. 29, 1449 (2004).
    [CrossRef] [PubMed]
  6. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006).
    [CrossRef]
  7. E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, and H. Takesue, "1.5μm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide," Opt. Lett. 31,727 (2006).
    [CrossRef] [PubMed]
  8. D. Derickson, "Fiber Optic Test and Measurement" (Pretentie-Hall, 1998), Chap.10 and 11.
  9. M. Wegmüller, M. Legré and N. Gisin, "Distributed Beatlength Measurement in Single-Mode Fibers with Optical Frequency-Domain Reflectometry," J. Lightwave Technol. 20, 828 (2002).
    [CrossRef]
  10. G.P. Arawal, "Fiber-Optic Communication Systems" (John Wiley & Sons, 1997).

2006 (2)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006).
[CrossRef]

E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, and H. Takesue, "1.5μm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide," Opt. Lett. 31,727 (2006).
[CrossRef] [PubMed]

2004 (4)

2002 (1)

M. Wegmüller, M. Legré and N. Gisin, "Distributed Beatlength Measurement in Single-Mode Fibers with Optical Frequency-Domain Reflectometry," J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

1988 (1)

J. Lightwave Technol. (2)

M. Wegmuller, F. Scholder, and N. Gisin, "Photon-Counting OTDR for Local Birefringence and Fault Analysis in the Metro Environment," J. Lightwave Technol. 22, 390 (2004).
[CrossRef]

M. Wegmüller, M. Legré and N. Gisin, "Distributed Beatlength Measurement in Single-Mode Fibers with Optical Frequency-Domain Reflectometry," J. Lightwave Technol. 20, 828 (2002).
[CrossRef]

J. Mod. Opt. (1)

A. P. Van Devender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 51,1433 (2004).

New J. Phys. (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006).
[CrossRef]

Opt. Lett. (4)

Other (2)

D. Derickson, "Fiber Optic Test and Measurement" (Pretentie-Hall, 1998), Chap.10 and 11.

G.P. Arawal, "Fiber-Optic Communication Systems" (John Wiley & Sons, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Set-up of the photon-counting module based on sum frequency generation.

Fig. 2.
Fig. 2.

Set-up of the v_OTDR. The system is used in either configuration 1 or 2. The system under test (SUT) is composed of two different artefacts either with, or without, a fibre.

Fig. 3.
Fig. 3.

Measurements of a 16km-length fibre performed by our apparatus. The trace OTDR is obtained when the scrambler is active, the P-OTDR trace when the scrambler is off.

Fig. 4.
Fig. 4.

a_ Measurement of the artefact 1 in configuration 1, the obtained resolution is ~1cm. b_ Measurements of artefact 2 in configuration 2. OFDR: black line; v-OTDR/0m fibre: red line; v-OTDR/20km DSF: green line; v-OTDR/50km fibre: blue line.

Metrics