Abstract

Instrument-limited suppression of out-of-band Amplified Spontaneous Emission (ASE) is demonstrated in a Nd:YLF Diode-Pumped Regenerative Amplifier (DPRA) using a Volume Bragg Grating (VBG) as a spectrally selective reflective element. A VBG with 99.4% diffraction efficiency and 230-pm-FWHM reflection bandwidth produced a 43-pm-FWHM output spectral width in an unseeded DPRA compared to 150-pm FWHM in the same DPRA with no VBG. Instrument-limited ASE suppression is even observed when the DPRA seed pulse energy approaches the ASE background.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, "New approach to robust optics for HEL systems," in Laser Weapons Technology III, W. E. Thompson and P. H. Merritt, eds. (SPIE, Bellingham, WA, 2002), Vol. 4724, pp. 101−109.
  2. G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "Stable coherent coupling of laser diodes by a volume Bragg grating in photothermorefractive glass," Opt. Lett. 31, 1453−1455 (2006).
    [CrossRef] [PubMed]
  3. Y. Kaneda, L. Fan, T.-C. Hsu, N. Peyghambarian, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stoltz, S. Koch, R. Bedford, A. Sevian, and L. Glebov, "High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers," IEEE Photon. Technol. Lett. 18, 1795−1797 (2006).
    [CrossRef]
  4. B. Jacobsson, V. Pasiskevicius, and F. Laurell, "Tunable single-longitudinal-mode ErYb:Glass laser locked by a bulk glass Bragg grating," Opt. Lett. 31, 1663−1665 (2006).
    [CrossRef] [PubMed]
  5. A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, "High power cw Tm:YLF laser with a holographic output coupler," in Conference on Lasers and Electro-Optics/Photonic Applications, Systems and Technologies Conference (CLEO/PhAST 2004), OSA Technical Digest (Optical Society of America, Washington, DC, 2004), p. CThZ3.
  6. T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt. Lett. 31, 229−231 (2006).
    [CrossRef] [PubMed]
  7. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, "Narrowband bulk Bragg grating optical parametric oscillator," Opt. Lett. 30, 2281−2283 (2005).
    [CrossRef] [PubMed]
  8. K.-H. Liao, M.-Y. Cheng, E. Flecher, V. I. Smirnov, L. B. Glebov, and A. Galvanauskas "Large-aperture chirped volume Bragg grating based fiber CPA system," Opt. Express 15, 4876-4882 (2007).
    [CrossRef] [PubMed]
  9. W. Koechner, Solid-State Laser Engineering, 4th rev. ed., Springer Series in Optical Sciences, (Springer, Berlin, 1996), Vol. 1, p. 182.
  10. N. Forget, A. Cotel, E. Brambrink, P. Audebert, C. Le Blanc, A. Jullien, O. Albert, and G. Chériaux, "Pump-noise transfer in optical parametric chirped-pulse amplification," Opt. Lett. 30, 2921−2923 (2005).
    [CrossRef] [PubMed]
  11. V. Bagnoud, M. J. Guardalben, J. Puth, J. D. Zuegel, T. Mooney, and P. Dumas, "High-energy, high-average-power laser with Nd:YLF rods corrected by magnetorheological finishing," Appl. Opt. 44, 282−288 (2005).
    [CrossRef] [PubMed]
  12. A. V. Okishev and J. D. Zuegel, "Highly stable, all-solid-state Nd:YLF regenerative amplifier," Appl. Opt. 43, 6180−6186 (2004).
    [CrossRef] [PubMed]
  13. A. V. Okishev, M. D. Skeldon, and W. Seka, "A highly stable, diode-pumped master oscillator for the OMEGA laser facility," in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., OSA TOPS, Vol. 26 (Optical Society of America, Washington, DC, 1999), pp. 228−235.

2007 (1)

2006 (4)

2005 (3)

2004 (1)

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

Y. Kaneda, L. Fan, T.-C. Hsu, N. Peyghambarian, M. Fallahi, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stoltz, S. Koch, R. Bedford, A. Sevian, and L. Glebov, "High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers," IEEE Photon. Technol. Lett. 18, 1795−1797 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Other (4)

A. Dergachev, P. F. Moulton, V. Smirnov, and L. Glebov, "High power cw Tm:YLF laser with a holographic output coupler," in Conference on Lasers and Electro-Optics/Photonic Applications, Systems and Technologies Conference (CLEO/PhAST 2004), OSA Technical Digest (Optical Society of America, Washington, DC, 2004), p. CThZ3.

W. Koechner, Solid-State Laser Engineering, 4th rev. ed., Springer Series in Optical Sciences, (Springer, Berlin, 1996), Vol. 1, p. 182.

A. V. Okishev, M. D. Skeldon, and W. Seka, "A highly stable, diode-pumped master oscillator for the OMEGA laser facility," in Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., OSA TOPS, Vol. 26 (Optical Society of America, Washington, DC, 1999), pp. 228−235.

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, "New approach to robust optics for HEL systems," in Laser Weapons Technology III, W. E. Thompson and P. H. Merritt, eds. (SPIE, Bellingham, WA, 2002), Vol. 4724, pp. 101−109.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Volume Bragg grating (VBG) is used in a folded linear cavity regenerative amplifier as one of the mirrors for spectral filtering. DPRA cavity dumping occurs when intracavity buildup reaches its maximum (inset).

Fig. 2.
Fig. 2.

(a) VBG with a Gaussian filter function using a 230-pm FWHM one-pass bandwidth (blue line) produces a filter function with an effective bandwidth of 23 pm FWHM after 50 round trips in the DPRA with a VBG-two-pass configuration (green line); (b) 2-ns FWHM super-Gaussian pulse before (blue line) and after (green markers) bandwidth narrowing using a 23-pm FWHM filter (simulation); (c) measured 2.4-ns FWHM pulse shape after the DPRA with further amplification and doubling for the DPRA with mirror (blue line) and with the VBG (red line).

Fig. 3.
Fig. 3.

Output beam profile corresponds to TEM00 mode for both DPRA configurations with (a) mirror and (b) VBG. DPRA output energy is 4 mJ.

Fig. 4.
Fig. 4.

Output spectra for the DPRA without injection: the DPRA with a mirror produces a gain-narrowed ASE spectrum with 150-pm FWHM (blue line); the DPRA with the VBG spectrum is narrowed to 43-pm FWHM (red line). In the latter case, the spectrum width and shape are defined by the common action of the VBG reflection curve and Nd:YLF gain profile. In both cases DPRA performance has been optimized for cavity dumping after 21 cavity roundtrips.

Fig. 5.
Fig. 5.

(a) Simulations show that for a reliable OSA recording of ASE filtering effect, the injected energy must be about equal to the DPRA ASE (in this case E ASE = 0.7 E in). (b) Output spectra for the DPRA with injected pulse energy of 0.0025 pJ, comparable to DPRA ASE: with the mirror (blue line) a significant ASE pedestal is observed; with the VBG (red line), the spectrum does not show any presence of ASE. The number of round-trips—21— is the same for all cases.

Metrics