Abstract

We describe a highly sensitive, real-time method of detecting small particles in a fluid flow by self-mixing laser Doppler measurement with a laser-diode-pumped, thin-slice solid-state laser with extremely high optical sensitivity. Asymmetric power spectra of the laser output modulated by the re-injected scattered light from the small particles moving in a dilute sample-flow, through a small-diameter glass pipe, were observed. The observed power spectra are shown to reflect the velocity distribution of the fluid flow, which obeys Poiseuille’s law. Quick measurements of flow rate and kinetic viscosities of water-glycerol mixtures were also performed successfully. Measurable low-concentration limits for 262-nm polystyrene latex spheres and 3-μm red blood cells in a fluid flow were below 1 and 10 ppm, respectively, in the present self-mixing laser Doppler velocimeter system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. J. Perona, T. D. Hylton, E. L. Youngblood, and R. L. Cummins, "Jet mixing of liquids in long horizontal cylindrical tanks," Ind. Eng. Chem. Res. 37, 1478-1482 (1998).
    [CrossRef]
  2. C. W. Turner and D. W. Smith, "Calcium carbonate scaling kinetics determined from radiotracer experiments with calcium-47," Ind. Eng. Chem. Res. 37, 439-448 (1998).
    [CrossRef]
  3. W. J. Kelly and S. Patel, "Flow of viscous shear-thinning fluids behind cooling coil banks in large reactors," Ind. Eng. Chem. Res. 40, 3829-3834 (2001).
    [CrossRef]
  4. S. Bröring, J. Fischer, T. Korte, S. Sollinger and A. Lübbert, "Flow structure of the dispersed gasphase in real multiphase chemical reactors investigated by a new ultrasound-Doppler technique," Can. J. Chem. Eng. 15, 1247-1256 (1991).
    [CrossRef]
  5. Y. Imai and K. Tanaka, "Direct velocity sensing of flow distribution based on low-coherence interferometry," J. Opt. Soc. Am. A 16, 2007-2012 (1999).
    [CrossRef]
  6. M. Saito, S. Izumida, K. Onishi, and J. Akazawa, "Detection efficiency of microparticles in laser breakdown water analysis," J. Appl. Phys. 85, 6353-6357 (1999).
    [CrossRef]
  7. R. K. Y. Chan and K. M. Un, "Real-time size distribution, concentration, and biomass measurement of marine phytoplankton with a novel dual-beam laser fluorescence Doppler cytometer," Appl. Opt. 40, 2956-2965 (2001).
    [CrossRef]
  8. S. G. Proskurin, Y. He, and R. K. Wang, "Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography," Opt. Lett. 28, 1227-1229 (2003).
    [CrossRef] [PubMed]
  9. K. Shirai, L. Buttner, J. Czarske, H. Muller, and F. Durst, "Heterodyne laser-Doppler line-sensor for highly resolved velocity measurements of shear flows," Flow Meas. Instrum. 16, 221-228 (2005).
    [CrossRef]
  10. L. E. Drain, The Laser Doppler Technique (John Wiley, N. Y., 1980).
  11. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Self-mixing technique for sensing applications," J. Opt. A 4, S283-S294 (2002).
    [CrossRef]
  12. L. Scalise and N. Paone, "Laser doppler vibrometry based on self-mixing effect," Opt. Lasers Eng. 38, 173-184 (2002).
    [CrossRef]
  13. G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
    [CrossRef]
  14. D. Han, M. Wang, and J. Zhou, "Self-mixing speckle interference in DFB lasers," Opt. Express 14, 3312-3317 (2006).
    [CrossRef] [PubMed]
  15. F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, "Self-mixing laser-doppler velocimetry of liquid flow and blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).
    [CrossRef]
  16. M. H. Koelink, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Fiber-coupled self-mixing diode-laser Doppler velocimeter: technical aspects and flow velocity profile disturbances in water and blood flows," Appl. Opt. 33, 5628-5641 (1994).
    [CrossRef] [PubMed]
  17. L. Scalise, W. Steenbergen, and F. de Mul, "Self-mixing feedback in a laser diode for intra-arterial optical blood velocimetry," Appl. Opt. 40, 4608-4615 (2001).
    [CrossRef]
  18. A. N. Serov, J. Nieland, S. Oosterbaan, F. F. M. de Mul, H. van Kranenburg, H. H. P. Th. Bekman, and W. Steenbergen, "Integrated optoelectronic probe Including a vertical cavity surface emitting laser for laser Doppler perfusion monitoring," IEEE Trans. on Bio-Med. Eng. 53, 2067-2073 (2006).
    [CrossRef]
  19. S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments," Opt. Eng. 39, 2574-2580 (2000).
    [CrossRef]
  20. K. Otsuka, "Effects of external perturbations on LiNdP4O12 lasers," IEEE J. Quantum Electron. QE-15, 655-663 (1979).
    [CrossRef]
  21. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, "Real-time nanometer vibration measurement with a self-mixing microchip solid-state laser," Opt. Lett. 27, 1339-1341 (2002).
    [CrossRef]
  22. K. Abe, K. Otsuka, and J.-Y. Ko, "Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction," New J. Phys.  5, 8.1-8.9 (2003).
    [CrossRef]
  23. K. Otsuka, K. Abe, N. Sano, S. Sudo, and J.-Y. Ko, "Two-channel self-mixing laser Doppler measurement with carrier-frequency-division multiplexing," Appl. Opt. 44, 1709-1714 (2005).
    [CrossRef] [PubMed]
  24. S. Sudo, Y. Miyasaka, K. Otsuka, Y. Takahashi, T. Oishi, and J.-Y. Ko, "Quick and easy measurement of particle size of Brownian particles and plankton in water using a self-mixing laser," Opt. Express 14, 1044-1054 (2006).
    [CrossRef]
  25. S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, "Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser," Jpn. J. Appl. Phys. 45, L926-L928 (2006).
    [CrossRef]
  26. M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
    [CrossRef]
  27. L. E. Estes, L. M. Narducci, and R. A. Tuft, "Scattering of light from a rotating ground glass," J. Opt. Soc. Am. 61, 1301 (1971).
    [CrossRef]

2006

D. Han, M. Wang, and J. Zhou, "Self-mixing speckle interference in DFB lasers," Opt. Express 14, 3312-3317 (2006).
[CrossRef] [PubMed]

A. N. Serov, J. Nieland, S. Oosterbaan, F. F. M. de Mul, H. van Kranenburg, H. H. P. Th. Bekman, and W. Steenbergen, "Integrated optoelectronic probe Including a vertical cavity surface emitting laser for laser Doppler perfusion monitoring," IEEE Trans. on Bio-Med. Eng. 53, 2067-2073 (2006).
[CrossRef]

S. Sudo, Y. Miyasaka, K. Otsuka, Y. Takahashi, T. Oishi, and J.-Y. Ko, "Quick and easy measurement of particle size of Brownian particles and plankton in water using a self-mixing laser," Opt. Express 14, 1044-1054 (2006).
[CrossRef]

S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, "Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser," Jpn. J. Appl. Phys. 45, L926-L928 (2006).
[CrossRef]

2005

K. Otsuka, K. Abe, N. Sano, S. Sudo, and J.-Y. Ko, "Two-channel self-mixing laser Doppler measurement with carrier-frequency-division multiplexing," Appl. Opt. 44, 1709-1714 (2005).
[CrossRef] [PubMed]

K. Shirai, L. Buttner, J. Czarske, H. Muller, and F. Durst, "Heterodyne laser-Doppler line-sensor for highly resolved velocity measurements of shear flows," Flow Meas. Instrum. 16, 221-228 (2005).
[CrossRef]

2003

2002

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Self-mixing technique for sensing applications," J. Opt. A 4, S283-S294 (2002).
[CrossRef]

L. Scalise and N. Paone, "Laser doppler vibrometry based on self-mixing effect," Opt. Lasers Eng. 38, 173-184 (2002).
[CrossRef]

K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, "Real-time nanometer vibration measurement with a self-mixing microchip solid-state laser," Opt. Lett. 27, 1339-1341 (2002).
[CrossRef]

2001

2000

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments," Opt. Eng. 39, 2574-2580 (2000).
[CrossRef]

1999

Y. Imai and K. Tanaka, "Direct velocity sensing of flow distribution based on low-coherence interferometry," J. Opt. Soc. Am. A 16, 2007-2012 (1999).
[CrossRef]

M. Saito, S. Izumida, K. Onishi, and J. Akazawa, "Detection efficiency of microparticles in laser breakdown water analysis," J. Appl. Phys. 85, 6353-6357 (1999).
[CrossRef]

1998

J. J. Perona, T. D. Hylton, E. L. Youngblood, and R. L. Cummins, "Jet mixing of liquids in long horizontal cylindrical tanks," Ind. Eng. Chem. Res. 37, 1478-1482 (1998).
[CrossRef]

C. W. Turner and D. W. Smith, "Calcium carbonate scaling kinetics determined from radiotracer experiments with calcium-47," Ind. Eng. Chem. Res. 37, 439-448 (1998).
[CrossRef]

1995

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
[CrossRef]

1994

1992

1991

S. Bröring, J. Fischer, T. Korte, S. Sollinger and A. Lübbert, "Flow structure of the dispersed gasphase in real multiphase chemical reactors investigated by a new ultrasound-Doppler technique," Can. J. Chem. Eng. 15, 1247-1256 (1991).
[CrossRef]

1979

K. Otsuka, "Effects of external perturbations on LiNdP4O12 lasers," IEEE J. Quantum Electron. QE-15, 655-663 (1979).
[CrossRef]

1971

Appl. Opt.

Can. J. Chem. Eng.

S. Bröring, J. Fischer, T. Korte, S. Sollinger and A. Lübbert, "Flow structure of the dispersed gasphase in real multiphase chemical reactors investigated by a new ultrasound-Doppler technique," Can. J. Chem. Eng. 15, 1247-1256 (1991).
[CrossRef]

Flow Meas. Instrum.

K. Shirai, L. Buttner, J. Czarske, H. Muller, and F. Durst, "Heterodyne laser-Doppler line-sensor for highly resolved velocity measurements of shear flows," Flow Meas. Instrum. 16, 221-228 (2005).
[CrossRef]

IEEE J. Quantum Electron.

K. Otsuka, "Effects of external perturbations on LiNdP4O12 lasers," IEEE J. Quantum Electron. QE-15, 655-663 (1979).
[CrossRef]

IEEE Trans. on Bio-Med. Eng.

A. N. Serov, J. Nieland, S. Oosterbaan, F. F. M. de Mul, H. van Kranenburg, H. H. P. Th. Bekman, and W. Steenbergen, "Integrated optoelectronic probe Including a vertical cavity surface emitting laser for laser Doppler perfusion monitoring," IEEE Trans. on Bio-Med. Eng. 53, 2067-2073 (2006).
[CrossRef]

Ind. Eng. Chem. Res.

J. J. Perona, T. D. Hylton, E. L. Youngblood, and R. L. Cummins, "Jet mixing of liquids in long horizontal cylindrical tanks," Ind. Eng. Chem. Res. 37, 1478-1482 (1998).
[CrossRef]

C. W. Turner and D. W. Smith, "Calcium carbonate scaling kinetics determined from radiotracer experiments with calcium-47," Ind. Eng. Chem. Res. 37, 439-448 (1998).
[CrossRef]

W. J. Kelly and S. Patel, "Flow of viscous shear-thinning fluids behind cooling coil banks in large reactors," Ind. Eng. Chem. Res. 40, 3829-3834 (2001).
[CrossRef]

J. Appl. Phys.

M. Saito, S. Izumida, K. Onishi, and J. Akazawa, "Detection efficiency of microparticles in laser breakdown water analysis," J. Appl. Phys. 85, 6353-6357 (1999).
[CrossRef]

J. Opt. A

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Self-mixing technique for sensing applications," J. Opt. A 4, S283-S294 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

S. Sudo, Y. Miyasaka, K. Kamikariya, K. Nemoto, and K. Otsuka, "Microanalysis of Brownian particles and real-time nanometer vibrometry with a laser-diode-pumped self-mixing thin-slice solid-state laser," Jpn. J. Appl. Phys. 45, L926-L928 (2006).
[CrossRef]

Meas. Sci. Technol.

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
[CrossRef]

Opt. Commun.

M. Harris, G. N. Pearson, C. A. Hill, and J. M. Vaughan, "The fractal character of Gaussian-Lorentzian light," Opt. Commun. 116, 15-19 (1995).
[CrossRef]

Opt. Eng.

S. K. Özdemir, S. Shinohara, S. Takamiya, and H. Yoshida, "Noninvasive blood flow measurement using speckle signals from a self-mixing laser diode: in vitro and in vivo experiments," Opt. Eng. 39, 2574-2580 (2000).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

L. Scalise and N. Paone, "Laser doppler vibrometry based on self-mixing effect," Opt. Lasers Eng. 38, 173-184 (2002).
[CrossRef]

Opt. Lett.

Other

K. Abe, K. Otsuka, and J.-Y. Ko, "Self-mixing laser Doppler vibrometry with high optical sensitivity: application to real-time sound reproduction," New J. Phys.  5, 8.1-8.9 (2003).
[CrossRef]

L. E. Drain, The Laser Doppler Technique (John Wiley, N. Y., 1980).

Supplementary Material (2)

» Media 1: MOV (1052 KB)     
» Media 2: MOV (884 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup for the self-mixing laser scattering spectroscopy of small particles in suspension.

Fig. 2.
Fig. 2.

Configuration of the flow passage for a dilute sample-flow.

Fig. 3.
Fig. 3.

Time dependency of the power spectrum for 262-nm diameter PS particles in a water-flow with concentration of 0.05 wt% (a) before the flow of the dilute sample and at (b) 0 s, (c) 2 s, (d) 5 s, (e) 8 s, and (f) 11 s. [Media 1]

Fig. 4.
Fig. 4.

Power spectra for 262-nm diameter PS particles in various water-glycerol mixtures.

Fig. 5.
Fig. 5.

Configuration of the flow passage for dilute sample-drop.

Fig. 6.
Fig. 6.

Time dependency of the power spectrum for 262-nm-diameter PS particles in dropped water with 0.05 wt% concentration (a) before the flow of dilute sample and at (b) 0 s, (c) 2 s, (d) 5 s, (e) 8 s, and (f) 11 s. The red lines indicate the results of curve fitting using a Gaussian function. [Media 2]

Fig. 7.
Fig. 7.

Power spectrum for 262-nm diameter PS particles in dropped water with 0.05 wt.% concentration for various distances of the probing position from the passage: (a) inside the passage and at (b) 0.80 mm, (c) 0.83 mm, (d) 0.85 mm, (e) 0.90 mm, (f) 1.30 mm, (g) 1.40 mm, (h) 2.50 mm, (i) 3.00 mm, and (j) 5.00 mm.

Fig. 8.
Fig. 8.

(a). Dependence of the calculated flow velocity in the passage on distance from the center of the passage. (b) Power spectrum for PS in water-flow in the passage. The black line indicates the observed power spectrum. The dashed lines indicate the power spectrum for PS particles moving with each velocity element. red: d = 5.5mm, orange: 5.0 mm, green: 4.0 mm, blue: 2.0 mm, violet: 0 mm. The gray line indicates the summation of the power spectra for all velocity elements.

Fig. 9.
Fig. 9.

(a). Relationships between the maximum velocities calculated from the volumetric flow rate and obtained from observed power spectra. (b) Relationships between the kinetic viscosities for glycerol-water mixtures measured using an Ubbelohde capillary viscosimeter and obtained from observed power spectra.

Fig. 10.
Fig. 10.

Power spectrum for (a) 262-nm diameter PS particles and (b) red blood cells in a water flow with various concentrations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f D = 2 v z λ = 2 v sin θ λ .
I ( ω ) = A w exp { [ ω 2 π ( 2 f AOM + f D ) ] 2 w 2 } ,
v ( r ) = Δ P 4 πη ( a 2 r 2 ) .
Q t = π a 2 v avg = 1 2 π a 2 v max .
I ( ω ) = i A i w i exp { [ ω 2 π ( 2 f AOM + f D , i ) ] 2 w i 2 } .

Metrics