Abstract

The temperature sensitivity of modal birefringence (dB/dT) of different types of polarization-maintaining fibers with side holes was measured using a Sagnac loop interferometer. The thermal expansion coefficient can be varied by controlling the amount of germanium doped in the core region. Using this method, dB/dT could be made higher (~10-7/°C) than that of standard PMFs (~10-8/°C) or comparable to that of standard PMFs (~10-9/°C).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
    [CrossRef]
  2. G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and multipoint fiber-laser sensors," IEEE Photon. Technol. Lett. 5, 267-270 (1993).
    [CrossRef]
  3. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  4. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, "High-birefringence fiber loop mirrors and their applications as sensors," Appl. Opt. 44, 2382-2390 (2005).
    [CrossRef] [PubMed]
  5. E. De L. Rosa-Cruz, F. Mendoza-Santoyo, A. N. Starodumov, and M. Pacheco, "Temperature-induced changes of sensitivity in the unbalanced Hi-Bi fiber Sagnac interferometer," Fiber and Int. Opt. 18, 41-48 (1999).
    [CrossRef]
  6. A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
    [CrossRef]
  7. W. Eickhoff, "Temperature sensing by mode - mode interference in birefringent optical fibers," Opt. Lett. 6, 204-206 (1981).
    [CrossRef] [PubMed]
  8. K. S. Chiang and H. Tsuchida, "Dual-sensor technique for extending the dynamic range of a fiber-optic interferometric sensor," Opt. Lett. 13, 850-852 (1988).
    [CrossRef] [PubMed]
  9. M. P. Varnham, A. J. Barlow, D. N. Payne, and K. Okamoto, "Polarimetric strain gauges using high birefringence fiber," Electron. Lett. 19, 699-700 (1983).
    [CrossRef]
  10. K. S. Chiang, H. L. W. Chan, and J. L. Gardner, "Detection of high-frequency ultrasound with a polarization-maintaining fiber," J. Lightwave Technol. 8, 1221-1227 (1990).
    [CrossRef]
  11. K. S. Chiang, "Temperature sensitivity of coated stress-induced birefringent optical fibers," Opt. Eng. 36, 999-1007 (1997).
    [CrossRef]
  12. D. S. Moon, U. C. Paek, and Y. Chung, "Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core," Opt. Express 13, 5574-5579 (2005).
    [CrossRef] [PubMed]
  13. B. H. Kim, S. Moon, U. C. Paek, and W. T. Han, "All fiber polarimetric modulation using an electro-optic fiber with internal Pb-Sn electrodes," Opt. Express 14, 11234-11241 (2006).
    [CrossRef] [PubMed]
  14. C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, "Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer," IEEE Photon. Technol. Lett. 15, 269-271 (2003).
    [CrossRef]
  15. J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. LT-4, 1071-1089 (1986).
    [CrossRef]
  16. A. Barlow and D. Payne, "The stress-optic effect in optical fibers," IEEE J. Quantum Electron. QE-19, 834-839 (1983).
    [CrossRef]
  17. A. Michie, J. Canning, K. Lyytikäinen, M. Åslund, and J. Digweed, "Temperature independent highly birefringent photonic crystal fibre," Opt. Express 12, 5160-5165 (2004).
    [CrossRef] [PubMed]
  18. E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, "All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop," Opt. Lett. 22, 481-483 (1997).
    [CrossRef] [PubMed]
  19. D. H. Kim and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express 12, 4490-4495 (2004).
    [CrossRef] [PubMed]

2006 (1)

2005 (2)

2004 (2)

2003 (1)

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, "Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer," IEEE Photon. Technol. Lett. 15, 269-271 (2003).
[CrossRef]

1999 (1)

E. De L. Rosa-Cruz, F. Mendoza-Santoyo, A. N. Starodumov, and M. Pacheco, "Temperature-induced changes of sensitivity in the unbalanced Hi-Bi fiber Sagnac interferometer," Fiber and Int. Opt. 18, 41-48 (1999).
[CrossRef]

1997 (3)

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

K. S. Chiang, "Temperature sensitivity of coated stress-induced birefringent optical fibers," Opt. Eng. 36, 999-1007 (1997).
[CrossRef]

E. De la Rosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, "All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop," Opt. Lett. 22, 481-483 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
[CrossRef]

1993 (1)

G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and multipoint fiber-laser sensors," IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

1990 (1)

K. S. Chiang, H. L. W. Chan, and J. L. Gardner, "Detection of high-frequency ultrasound with a polarization-maintaining fiber," J. Lightwave Technol. 8, 1221-1227 (1990).
[CrossRef]

1988 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

1983 (2)

A. Barlow and D. Payne, "The stress-optic effect in optical fibers," IEEE J. Quantum Electron. QE-19, 834-839 (1983).
[CrossRef]

M. P. Varnham, A. J. Barlow, D. N. Payne, and K. Okamoto, "Polarimetric strain gauges using high birefringence fiber," Electron. Lett. 19, 699-700 (1983).
[CrossRef]

1981 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Electron. Lett. (1)

M. P. Varnham, A. J. Barlow, D. N. Payne, and K. Okamoto, "Polarimetric strain gauges using high birefringence fiber," Electron. Lett. 19, 699-700 (1983).
[CrossRef]

Fiber and Int. Opt. (1)

E. De L. Rosa-Cruz, F. Mendoza-Santoyo, A. N. Starodumov, and M. Pacheco, "Temperature-induced changes of sensitivity in the unbalanced Hi-Bi fiber Sagnac interferometer," Fiber and Int. Opt. 18, 41-48 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Barlow and D. Payne, "The stress-optic effect in optical fibers," IEEE J. Quantum Electron. QE-19, 834-839 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and multipoint fiber-laser sensors," IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, "Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer," IEEE Photon. Technol. Lett. 15, 269-271 (2003).
[CrossRef]

J. Lightwave Technol. (3)

J. Noda, K. Okamoto, and Y. Sasaki, "Polarization-maintaining fibers and their applications," J. Lightwave Technol. LT-4, 1071-1089 (1986).
[CrossRef]

K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
[CrossRef]

K. S. Chiang, H. L. W. Chan, and J. L. Gardner, "Detection of high-frequency ultrasound with a polarization-maintaining fiber," J. Lightwave Technol. 8, 1221-1227 (1990).
[CrossRef]

Opt. Eng. (1)

K. S. Chiang, "Temperature sensitivity of coated stress-induced birefringent optical fibers," Opt. Eng. 36, 999-1007 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The cross-section of the fabricated PM side-hole fiber with (a) an elliptical shape (Δn=0.02), (b) a circular shape I (Δn=0.018), and (c) a circular shape II (Δn=0.046).

Fig. 2.
Fig. 2.

The Sagnac loop interferometer’s output spectra of PM side-hole fiber: (a) an elliptical shape (L=10m, Δλ=1.4 nm), (b) a circular shape I (L=26m, Δλ=0.8 nm), (c) a circular shape II (L=20m, Δλ=7.05 nm).

Fig. 3.
Fig. 3.

The experimental setup of the Sagnac fiber temperature sensor.

Fig. 4.
Fig. 4.

The temperature sensitivity of PM side-hole fiber (a) with an elliptic shape (L=0.22 m, Δλ=67.85 nm), (b) a circular shape I (L=0.42 m, Δλ=50.29 nm), and (c) a circular shape II (L=1.3 m, Δλ=1 11.64 nm), respectively.

Fig. 5.
Fig. 5.

The peak separation versus temperature: (a) an elliptic shape, (b) a circular shape I, and (c) a circular shape II.

Tables (2)

Tables Icon

Table 1. The specification of fabricated PM side-hole fibers

Tables Icon

Table 2. dϕ/dT and dB/dT of fabricated PM side-hole fibers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 L d ϕ dT = 2 π λ B ( 1 B dB dT + 1 L dL dT ) ,
dB dT = λ Δλ 1 L d λ dT .

Metrics