Abstract

The cytoskeleton provides the backbone structure for the cellular organization, determining, in particular, the cellular mechanical properties. These are important factors in many biological processes, as, for instance, the metastatic process of malignant cells. In this paper, we demonstrate the possibility of monitoring the cytoskeleton structural transformations in optically trapped yeast cells (Saccharomyces cerevisiae) by tracking the forward scattered light via a quadrant photodiode. We distinguished normal cells from cells treated with latrunculin A, a drug which is known to induce the actin-cytoskeleton depolymerization. Since the proposed technique relies only on the inherent properties of the optical trap, without requiring external markers or biochemical sensitive spectroscopic techniques, it can be readily combined with existing optical tweezers setups.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, (Garland, New York, 2002).
  2. K. M. Rao and H. J. Cohen, “Actin cytoskeleton network in aging and cancer,” Mutat. Res. 256, 139–148 (1991).
    [PubMed]
  3. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
    [Crossref] [PubMed]
  4. K. A. Ward, W. I. Li, S. Zimmer, and T. Davis, “Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation,” Biorheology 28, 301–313 (1991).
    [PubMed]
  5. R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33, 15–22 (2000).
    [Crossref]
  6. I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
    [Crossref] [PubMed]
  7. I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett. 93, 0781021–0781024 (2004).
    [Crossref]
  8. G. V. Soni, B. M. J. Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking correlated bacterial dynamics,” Biophys. J. 84, 2634–2637 (2003).
    [Crossref] [PubMed]
  9. J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
    [Crossref] [PubMed]
  10. J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085–3095 (1999).
    [Crossref] [PubMed]
  11. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical Deformability of Soft Biological Dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
    [Crossref] [PubMed]
  12. L. P. Ghislain and W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18, 1678–1680 (1993).
    [Crossref] [PubMed]
  13. E. L. Florin, A. Pralle, E. H. Stelzer, and J. K. H. Horber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, 71–73 (1998).
    [Crossref]
  14. E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microreology of Biopolymer-Membrane Complexes,” Phys. Rev. Lett. 85, No.2 457–460 (2000).
    [Crossref] [PubMed]
  15. M. Wei, K. Yang, A. Karmenyan, and A. Chiou, “Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap,” Opt. Express 14, No.7 3056–3064 (2006).
    [Crossref] [PubMed]
  16. G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88, 2311061–3 (2006).
    [Crossref]
  17. M. T. Wei and A. Chiou, “Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants,” Opt. Express 13, No.15 5798–5806 (2005).
    [Crossref] [PubMed]
  18. M. Zhan, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
    [Crossref]
  19. L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
    [Crossref]
  20. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trapp,” Opt. Express 12, 1179–1184 (2004).
    [Crossref] [PubMed]
  21. S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of interaction of rbc with optical tweezers,” Opt. Express 13, 4745–4751 (2005).
    [Crossref] [PubMed]
  22. K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, “High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A,” J. Cell. Biol. 137, 399–416 (1997).
    [Crossref] [PubMed]
  23. M. Cou, S. L. Brenner, I. Spector, and E. D. Korn, “Inhibition of actin polymerization by latrunculin A,” FEBS Lett. 213, 316–318 (1987).
    [Crossref]
  24. S. C. Kuo, “A single assay for local heating by optical tweezers,” Methods Cell Biol. 55, 43–45 (1998).
    [Crossref]
  25. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
    [Crossref] [PubMed]
  26. G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc. 37, 858–864 (2006).
    [Crossref]
  27. C.F. Robinow and J. S. Hyams, in Molecular biology of the fission yeast, A. Nasim, P. Young, and B. F. Jonson, eds. (Academic Press, Inc. San Diego, 1989), pp. 273–330.
  28. T. A. Vida and S. D. Emr, “A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast,” J. Cell Biol. 128, 779–792 (1995).
    [Crossref] [PubMed]
  29. J. Achilles, H. Harms, and S. Muller, “Analysis of living S. cerevisiae cell states-A three color approach,” Cytom-etry A. 69, 173–177 (2006).
    [Crossref]
  30. L. Sacconi, I. M. Tolić-Nørrelykke, C. Stringari, R. Antolini, and F. S. Pavone, “Optical micromanipulations inside yeast cells,” Appl. Opt. 44, No. 11 2001–2007 (2005).
    [Crossref] [PubMed]
  31. K. L. Hill, N. L Catlett, and L. S. Weisman, “Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae,” J. Cell Biol. 135, 1535–1549 (1996).
    [Crossref] [PubMed]
  32. K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, “Live cell imaging of mitochondrial movement along actin cables in budding yeast,” Curr. Biol. 14, 1996–2004 (2004).
    [Crossref] [PubMed]
  33. K. M. Addas, C. F. Schmidt, and J. X. Tang, “Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry,” Phys. Rev. E 70, 021503 1–16 (2004).
    [Crossref]

2006 (4)

M. Wei, K. Yang, A. Karmenyan, and A. Chiou, “Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap,” Opt. Express 14, No.7 3056–3064 (2006).
[Crossref] [PubMed]

G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88, 2311061–3 (2006).
[Crossref]

G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc. 37, 858–864 (2006).
[Crossref]

J. Achilles, H. Harms, and S. Muller, “Analysis of living S. cerevisiae cell states-A three color approach,” Cytom-etry A. 69, 173–177 (2006).
[Crossref]

2005 (5)

L. Sacconi, I. M. Tolić-Nørrelykke, C. Stringari, R. Antolini, and F. S. Pavone, “Optical micromanipulations inside yeast cells,” Appl. Opt. 44, No. 11 2001–2007 (2005).
[Crossref] [PubMed]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

S. K. Mohanty, K. S. Mohanty, and P. K. Gupta, “Dynamics of interaction of rbc with optical tweezers,” Opt. Express 13, 4745–4751 (2005).
[Crossref] [PubMed]

M. T. Wei and A. Chiou, “Three-dimensional tracking of Brownian motion of a particle trapped in optical tweezers with a pair of orthogonal tracking beams and the determination of the associated optical force constants,” Opt. Express 13, No.15 5798–5806 (2005).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

2004 (5)

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
[Crossref] [PubMed]

I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett. 93, 0781021–0781024 (2004).
[Crossref]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trapp,” Opt. Express 12, 1179–1184 (2004).
[Crossref] [PubMed]

K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, “Live cell imaging of mitochondrial movement along actin cables in budding yeast,” Curr. Biol. 14, 1996–2004 (2004).
[Crossref] [PubMed]

K. M. Addas, C. F. Schmidt, and J. X. Tang, “Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry,” Phys. Rev. E 70, 021503 1–16 (2004).
[Crossref]

2003 (2)

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

G. V. Soni, B. M. J. Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking correlated bacterial dynamics,” Biophys. J. 84, 2634–2637 (2003).
[Crossref] [PubMed]

2000 (4)

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
[Crossref] [PubMed]

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33, 15–22 (2000).
[Crossref]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical Deformability of Soft Biological Dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microreology of Biopolymer-Membrane Complexes,” Phys. Rev. Lett. 85, No.2 457–460 (2000).
[Crossref] [PubMed]

1999 (2)

M. Zhan, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref]

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

1998 (2)

E. L. Florin, A. Pralle, E. H. Stelzer, and J. K. H. Horber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, 71–73 (1998).
[Crossref]

S. C. Kuo, “A single assay for local heating by optical tweezers,” Methods Cell Biol. 55, 43–45 (1998).
[Crossref]

1997 (1)

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, “High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A,” J. Cell. Biol. 137, 399–416 (1997).
[Crossref] [PubMed]

1996 (1)

K. L. Hill, N. L Catlett, and L. S. Weisman, “Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae,” J. Cell Biol. 135, 1535–1549 (1996).
[Crossref] [PubMed]

1995 (1)

T. A. Vida and S. D. Emr, “A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast,” J. Cell Biol. 128, 779–792 (1995).
[Crossref] [PubMed]

1993 (1)

1991 (2)

K. M. Rao and H. J. Cohen, “Actin cytoskeleton network in aging and cancer,” Mutat. Res. 256, 139–148 (1991).
[PubMed]

K. A. Ward, W. I. Li, S. Zimmer, and T. Davis, “Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation,” Biorheology 28, 301–313 (1991).
[PubMed]

1989 (1)

C.F. Robinow and J. S. Hyams, in Molecular biology of the fission yeast, A. Nasim, P. Young, and B. F. Jonson, eds. (Academic Press, Inc. San Diego, 1989), pp. 273–330.

1987 (1)

M. Cou, S. L. Brenner, I. Spector, and E. D. Korn, “Inhibition of actin polymerization by latrunculin A,” FEBS Lett. 213, 316–318 (1987).
[Crossref]

Achilles, J.

J. Achilles, H. Harms, and S. Muller, “Analysis of living S. cerevisiae cell states-A three color approach,” Cytom-etry A. 69, 173–177 (2006).
[Crossref]

Addas, K. M.

K. M. Addas, C. F. Schmidt, and J. X. Tang, “Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry,” Phys. Rev. E 70, 021503 1–16 (2004).
[Crossref]

Alberts, B.

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, (Garland, New York, 2002).

Ali, B. M. J.

G. V. Soni, B. M. J. Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking correlated bacterial dynamics,” Biophys. J. 84, 2634–2637 (2003).
[Crossref] [PubMed]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical Deformability of Soft Biological Dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Anan-thakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Antolini, R.

Ayscough, K. R.

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, “High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A,” J. Cell. Biol. 137, 399–416 (1997).
[Crossref] [PubMed]

Bausch, A. R.

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
[Crossref] [PubMed]

Berg-Sorensen, K.

I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett. 93, 0781021–0781024 (2004).
[Crossref]

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Bourdieu, L.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microreology of Biopolymer-Membrane Complexes,” Phys. Rev. Lett. 85, No.2 457–460 (2000).
[Crossref] [PubMed]

Bray, D.

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, (Garland, New York, 2002).

Brenner, S. L.

M. Cou, S. L. Brenner, I. Spector, and E. D. Korn, “Inhibition of actin polymerization by latrunculin A,” FEBS Lett. 213, 316–318 (1987).
[Crossref]

Bryant, P. E.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Catlett, N. L

K. L. Hill, N. L Catlett, and L. S. Weisman, “Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae,” J. Cell Biol. 135, 1535–1549 (1996).
[Crossref] [PubMed]

Chatenay, D.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microreology of Biopolymer-Membrane Complexes,” Phys. Rev. Lett. 85, No.2 457–460 (2000).
[Crossref] [PubMed]

Chiou, A.

Cohen, H. J.

K. M. Rao and H. J. Cohen, “Actin cytoskeleton network in aging and cancer,” Mutat. Res. 256, 139–148 (1991).
[PubMed]

Cou, M.

M. Cou, S. L. Brenner, I. Spector, and E. D. Korn, “Inhibition of actin polymerization by latrunculin A,” FEBS Lett. 213, 316–318 (1987).
[Crossref]

Creely, C. M.

G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc. 37, 858–864 (2006).
[Crossref]

Crews, P.

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, “High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A,” J. Cell. Biol. 137, 399–416 (1997).
[Crossref] [PubMed]

Crocker, J. C.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
[Crossref] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical Deformability of Soft Biological Dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Davis, T.

K. A. Ward, W. I. Li, S. Zimmer, and T. Davis, “Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation,” Biorheology 28, 301–313 (1991).
[PubMed]

Dharmadhikari, A. K.

Dharmadhikari, J. A.

Dholakia, K.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Drubin, D. G.

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, “High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A,” J. Cell. Biol. 137, 399–416 (1997).
[Crossref] [PubMed]

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Emr, S. D.

T. A. Vida and S. D. Emr, “A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast,” J. Cell Biol. 128, 779–792 (1995).
[Crossref] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Fehrenbacher, K. L.

K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, “Live cell imaging of mitochondrial movement along actin cables in budding yeast,” Curr. Biol. 14, 1996–2004 (2004).
[Crossref] [PubMed]

Florin, E. L.

E. L. Florin, A. Pralle, E. H. Stelzer, and J. K. H. Horber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, 71–73 (1998).
[Crossref]

Garces-Chavez, V.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Gardel, M. L.

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
[Crossref] [PubMed]

Gay, A. C.

K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, “Live cell imaging of mitochondrial movement along actin cables in budding yeast,” Curr. Biol. 14, 1996–2004 (2004).
[Crossref] [PubMed]

Geli, I. M.

G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc. 37, 858–864 (2006).
[Crossref]

Ghislain, L. P.

Gisler, T.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
[Crossref] [PubMed]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Gratzer, W.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

Grötsch, H.

G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc. 37, 858–864 (2006).
[Crossref]

Guck, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical Deformability of Soft Biological Dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Gunn-Moore, F. J.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Gupta, P. K.

Harlepp, S.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microreology of Biopolymer-Membrane Complexes,” Phys. Rev. Lett. 85, No.2 457–460 (2000).
[Crossref] [PubMed]

Harms, H.

J. Achilles, H. Harms, and S. Muller, “Analysis of living S. cerevisiae cell states-A three color approach,” Cytom-etry A. 69, 173–177 (2006).
[Crossref]

Hatwalne, Y.

G. V. Soni, B. M. J. Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking correlated bacterial dynamics,” Biophys. J. 84, 2634–2637 (2003).
[Crossref] [PubMed]

Helfer, E.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microreology of Biopolymer-Membrane Complexes,” Phys. Rev. Lett. 85, No.2 457–460 (2000).
[Crossref] [PubMed]

Hill, K. L.

K. L. Hill, N. L Catlett, and L. S. Weisman, “Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae,” J. Cell Biol. 135, 1535–1549 (1996).
[Crossref] [PubMed]

Hochmuth, R. M.

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33, 15–22 (2000).
[Crossref]

Horber, J. K. H.

E. L. Florin, A. Pralle, E. H. Stelzer, and J. K. H. Horber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, 71–73 (1998).
[Crossref]

Huckaba, T. M.

K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, “Live cell imaging of mitochondrial movement along actin cables in budding yeast,” Curr. Biol. 14, 1996–2004 (2004).
[Crossref] [PubMed]

Hyams, J. S.

C.F. Robinow and J. S. Hyams, in Molecular biology of the fission yeast, A. Nasim, P. Young, and B. F. Jonson, eds. (Academic Press, Inc. San Diego, 1989), pp. 273–330.

Johnson, A.

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, (Garland, New York, 2002).

Kaplan, P. D.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
[Crossref] [PubMed]

Karmenyan, A.

Kas, J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical Deformability of Soft Biological Dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Korn, E. D.

M. Cou, S. L. Brenner, I. Spector, and E. D. Korn, “Inhibition of actin polymerization by latrunculin A,” FEBS Lett. 213, 316–318 (1987).
[Crossref]

Kuo, S. C.

S. C. Kuo, “A single assay for local heating by optical tweezers,” Methods Cell Biol. 55, 43–45 (1998).
[Crossref]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Lewis, J.

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, (Garland, New York, 2002).

Li, W. I.

K. A. Ward, W. I. Li, S. Zimmer, and T. Davis, “Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation,” Biorheology 28, 301–313 (1991).
[PubMed]

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

MacKintosh, F. C.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microreology of Biopolymer-Membrane Complexes,” Phys. Rev. Lett. 85, No.2 457–460 (2000).
[Crossref] [PubMed]

Mathur, D.

Milne, G.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Mohanty, K. S.

Mohanty, S. K.

Moon, T. J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical Deformability of Soft Biological Dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Muller, S.

J. Achilles, H. Harms, and S. Muller, “Analysis of living S. cerevisiae cell states-A three color approach,” Cytom-etry A. 69, 173–177 (2006).
[Crossref]

Munteanu, E-L.

I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett. 93, 0781021–0781024 (2004).
[Crossref]

Oddershede, L.

I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett. 93, 0781021–0781024 (2004).
[Crossref]

Papagiakoumou, E.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Paterson, L.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Pavone, F. S.

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Petrov, D.

G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88, 2311061–3 (2006).
[Crossref]

G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc. 37, 858–864 (2006).
[Crossref]

Pokala, N.

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, “High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A,” J. Cell. Biol. 137, 399–416 (1997).
[Crossref] [PubMed]

Pon, L. A.

K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, “Live cell imaging of mitochondrial movement along actin cables in budding yeast,” Curr. Biol. 14, 1996–2004 (2004).
[Crossref] [PubMed]

Pralle, A.

E. L. Florin, A. Pralle, E. H. Stelzer, and J. K. H. Horber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, 71–73 (1998).
[Crossref]

Raff, M.

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, (Garland, New York, 2002).

Rao, K. M.

K. M. Rao and H. J. Cohen, “Actin cytoskeleton network in aging and cancer,” Mutat. Res. 256, 139–148 (1991).
[PubMed]

Reichman, D. R.

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
[Crossref] [PubMed]

Renken, J.

M. Zhan, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref]

Riches, A.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Robert, J.

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microreology of Biopolymer-Membrane Complexes,” Phys. Rev. Lett. 85, No.2 457–460 (2000).
[Crossref] [PubMed]

Roberts, K.

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, (Garland, New York, 2002).

Robinow, C.F.

C.F. Robinow and J. S. Hyams, in Molecular biology of the fission yeast, A. Nasim, P. Young, and B. F. Jonson, eds. (Academic Press, Inc. San Diego, 1989), pp. 273–330.

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Roy, S.

Sacconi, L.

Sanders, M.

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, “High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A,” J. Cell. Biol. 137, 399–416 (1997).
[Crossref] [PubMed]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Schmidt, C. F.

K. M. Addas, C. F. Schmidt, and J. X. Tang, “Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry,” Phys. Rev. E 70, 021503 1–16 (2004).
[Crossref]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Seeger, S.

M. Zhan, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref]

Sharma, S.

Shivashankar, G. V.

G. V. Soni, B. M. J. Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking correlated bacterial dynamics,” Biophys. J. 84, 2634–2637 (2003).
[Crossref] [PubMed]

Sibbet, W.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Simmons, R.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

Singh, G. P.

G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc. 37, 858–864 (2006).
[Crossref]

G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88, 2311061–3 (2006).
[Crossref]

Sleep, J.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

Soni, G. V.

G. V. Soni, B. M. J. Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking correlated bacterial dynamics,” Biophys. J. 84, 2634–2637 (2003).
[Crossref] [PubMed]

Spector, I.

M. Cou, S. L. Brenner, I. Spector, and E. D. Korn, “Inhibition of actin polymerization by latrunculin A,” FEBS Lett. 213, 316–318 (1987).
[Crossref]

Stelzer, E. H.

E. L. Florin, A. Pralle, E. H. Stelzer, and J. K. H. Horber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, 71–73 (1998).
[Crossref]

Stringari, C.

Stryker, J.

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, “High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A,” J. Cell. Biol. 137, 399–416 (1997).
[Crossref] [PubMed]

Tang, J. X.

K. M. Addas, C. F. Schmidt, and J. X. Tang, “Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry,” Phys. Rev. E 70, 021503 1–16 (2004).
[Crossref]

Tatarkova, S. A.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Thon, G.

I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett. 93, 0781021–0781024 (2004).
[Crossref]

Tolic-Norrelykke, I. M.

I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett. 93, 0781021–0781024 (2004).
[Crossref]

Tolic-Nørrelykke, I. M.

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Valentine, M. T.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
[Crossref] [PubMed]

Valentine, M.T.

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
[Crossref] [PubMed]

Vida, T. A.

T. A. Vida and S. D. Emr, “A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast,” J. Cell Biol. 128, 779–792 (1995).
[Crossref] [PubMed]

Volpe, G.

G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88, 2311061–3 (2006).
[Crossref]

G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc. 37, 858–864 (2006).
[Crossref]

Walter, P.

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, (Garland, New York, 2002).

Ward, K. A.

K. A. Ward, W. I. Li, S. Zimmer, and T. Davis, “Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation,” Biorheology 28, 301–313 (1991).
[PubMed]

Webb, W. W.

Weeks, E. R.

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
[Crossref] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
[Crossref] [PubMed]

Wei, M.

Wei, M. T.

Weisman, L. S.

K. L. Hill, N. L Catlett, and L. S. Weisman, “Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae,” J. Cell Biol. 135, 1535–1549 (1996).
[Crossref] [PubMed]

Weitz, D. A.

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
[Crossref] [PubMed]

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
[Crossref] [PubMed]

Wilson, D.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

Wong, I. Y.

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
[Crossref] [PubMed]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

Yang, H. C.

K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, “Live cell imaging of mitochondrial movement along actin cables in budding yeast,” Curr. Biol. 14, 1996–2004 (2004).
[Crossref] [PubMed]

Yang, K.

Yodh, A. G.

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
[Crossref] [PubMed]

Zhan, M.

M. Zhan, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref]

Zimmer, S.

K. A. Ward, W. I. Li, S. Zimmer, and T. Davis, “Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation,” Biorheology 28, 301–313 (1991).
[PubMed]

Appl. Opt. (1)

Appl. Phys. A (1)

E. L. Florin, A. Pralle, E. H. Stelzer, and J. K. H. Horber, “Photonic forcemicroscope calibration by thermal noise analysis,” Appl. Phys. A 66, 71–73 (1998).
[Crossref]

Appl. Phys. Lett. (2)

G. Volpe, G. P. Singh, and D. Petrov, “Dynamics of a growing cell in an optical trap,” Appl. Phys. Lett. 88, 2311061–3 (2006).
[Crossref]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garces-Chavez, S. A. Tatarkova, W. Sibbet, F. J. Gunn-Moore, P. E. Bryant, A. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901–3 (2005).
[Crossref]

Biophys. J. (4)

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer, “Elasticy of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study,” Biophys. J. 77, 3085–3095 (1999).
[Crossref] [PubMed]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Anan-thakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby “Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence,” Biophys. J. 88, 3689–3698 (2005).
[Crossref] [PubMed]

G. V. Soni, B. M. J. Ali, Y. Hatwalne, and G. V. Shivashankar, “Single particle tracking correlated bacterial dynamics,” Biophys. J. 84, 2634–2637 (2003).
[Crossref] [PubMed]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Biorheology (1)

K. A. Ward, W. I. Li, S. Zimmer, and T. Davis, “Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation,” Biorheology 28, 301–313 (1991).
[PubMed]

Curr. Biol. (1)

K. L. Fehrenbacher, H. C. Yang, A. C. Gay, T. M. Huckaba, and L. A. Pon, “Live cell imaging of mitochondrial movement along actin cables in budding yeast,” Curr. Biol. 14, 1996–2004 (2004).
[Crossref] [PubMed]

Cytom-etry A. (1)

J. Achilles, H. Harms, and S. Muller, “Analysis of living S. cerevisiae cell states-A three color approach,” Cytom-etry A. 69, 173–177 (2006).
[Crossref]

FEBS Lett. (2)

M. Cou, S. L. Brenner, I. Spector, and E. D. Korn, “Inhibition of actin polymerization by latrunculin A,” FEBS Lett. 213, 316–318 (1987).
[Crossref]

M. Zhan, J. Renken, and S. Seeger, “Fluorimetric multiparameter cell assay at the single cell level fabricated by optical tweezers,” FEBS Lett. 443, 337–340 (1999).
[Crossref]

J. Biomech. (1)

R. M. Hochmuth, “Micropipette aspiration of living cells,” J. Biomech. 33, 15–22 (2000).
[Crossref]

J. Cell Biol. (2)

K. L. Hill, N. L Catlett, and L. S. Weisman, “Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae,” J. Cell Biol. 135, 1535–1549 (1996).
[Crossref] [PubMed]

T. A. Vida and S. D. Emr, “A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast,” J. Cell Biol. 128, 779–792 (1995).
[Crossref] [PubMed]

J. Cell. Biol. (1)

K. R. Ayscough, J. Stryker, N. Pokala, M. Sanders, P. Crews, and D. G. Drubin, “High rates of actin filaments turnover in budding yeast and roles for actin in extablishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin A,” J. Cell. Biol. 137, 399–416 (1997).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

G. P. Singh, G. Volpe, C. M. Creely, H. Grötsch, I. M. Geli, and D. Petrov, “The lag phase and G1 phase of a single yeast cell monitored by Raman microspectroscopy,” J. Raman Spectrosc. 37, 858–864 (2006).
[Crossref]

Methods Cell Biol. (1)

S. C. Kuo, “A single assay for local heating by optical tweezers,” Methods Cell Biol. 55, 43–45 (1998).
[Crossref]

Mutat. Res. (1)

K. M. Rao and H. J. Cohen, “Actin cytoskeleton network in aging and cancer,” Mutat. Res. 256, 139–148 (1991).
[PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. E (1)

K. M. Addas, C. F. Schmidt, and J. X. Tang, “Microrheology of solutions of semiflexible biopolymer filaments using laser tweezers interferometry,” Phys. Rev. E 70, 021503 1–16 (2004).
[Crossref]

Phys. Rev. Lett. (5)

J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, and D. A. Weitz, “Two.point microrheology of inhomogeneous soft material,” Phys. Rev. Lett. 85, 888–891 (2000).
[Crossref] [PubMed]

I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M.T. Valentine, A. R. Bausch, and D. A. Weitz, “Anomalous diffusion probes microstructure dynamics of entangled F-Actin natworks,” Phys. Rev. Lett. 92, No.17, 178101–4 (2004).
[Crossref] [PubMed]

I. M. Tolic-Norrelykke, E-L. Munteanu, G. Thon, L. Oddershede, and K. Berg-Sorensen, “Anomalous diffusion in living yeast cells,” Phys. Rev. Lett. 93, 0781021–0781024 (2004).
[Crossref]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Kas, “Optical Deformability of Soft Biological Dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, “Microreology of Biopolymer-Membrane Complexes,” Phys. Rev. Lett. 85, No.2 457–460 (2000).
[Crossref] [PubMed]

Other (2)

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Essential Cell Biology, (Garland, New York, 2002).

C.F. Robinow and J. S. Hyams, in Molecular biology of the fission yeast, A. Nasim, P. Young, and B. F. Jonson, eds. (Academic Press, Inc. San Diego, 1989), pp. 273–330.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup: L, lens; M, mirror; DM, dichroic mirror; QPD, quadrant pho-todiode.

Fig. 2.
Fig. 2.

(A), yeast cell under zero-dragging condition (v = 0): the trapped organelle is in the cell center. (B), yeast cell under dragging condition (v = v 1) the whole cell is translated while the organelle remains fixed. (C),increasing the dragging force (v 2 > v 1) trapped organelle is almost in contact with the cell membrane.

Fig. 3.
Fig. 3.

The optical potential well U(x) for a healthy yeast cell. The solid line represent the best fit performed with a parabolic function.

Fig. 4.
Fig. 4.

The optical potential well for a LAT-A treated cell after a incubation time of 15 min (a) and 2 h (b).

Fig. 5.
Fig. 5.

Behavior of kxβ 2 for a LAT-A treated cell versus the observation time.

Fig. 6.
Fig. 6.

Experimental PSD from the x signal for a trapped polystyrene bead (trace a) and for a trapped normal yeast cell (trace b). The Lorentzian fitting curves are also shown.

Fig. 7.
Fig. 7.

Measured frequency corner for a living cell (a) and a LAT-A treated cell (b) during 2 hours. In the second case, the corner frequency increases with time.

Fig. 8.
Fig. 8.

Behavior of η for a LAT-A treated cell under 2 h.

Tables (1)

Tables Icon

Table 1. A comparison of the trap stiffness, corner frequency and their ratio R for different conditions of yeast cell.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U ( V x ) = 1 2 k x β 2 V x 2
< k x β 2 > = ( 2.9 ± 0.8 ) 10 13 p N m V 2
P ( f ) = k B T π 2 γ 1 ( f c 2 + f 2 )
f c = k i 2 π γ
R = k x β 2 f c x η .

Metrics