Abstract

The effect of the microstructure on transversely coupled laser light into the core of a photonic crystal fiber is investigated. Computational two-dimensional modeling and direct experimental measurements indicate that there exist angles and positions of the fiber microstructure, relative to a transversely launched laser beam, that preferentially couple laser light into the fiber core. The implications of these observations on long period and fiber-Bragg grating fabrication in photonic crystal fibers are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. F. Li, F. C. Salisbury, Z. M. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, "Interaction of supercontinuum and Raman solitons with microstructure fiber gratings," Opt. Express 13, 998-1007 (2005).
    [CrossRef] [PubMed]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  3. H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
    [CrossRef]
  4. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
    [CrossRef]
  5. V. Beugin, L. Bigot, P. May, M. Lancry, Y. Quiquempois, M. Douay, G. Melin, A. Fleureau, S. Lempereur, and L. Gasca, "Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber," Appl. Opt. 45, 8186-8193 (2006).
    [CrossRef] [PubMed]
  6. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
    [CrossRef] [PubMed]
  7. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
    [CrossRef]
  8. H. R. Sorensen, J. Canning, J. Laegsgaard, K. Hansen, and P. Varming, "Liquid filling of photonic crystal fibres for grating writing," Opt. Commun. 270, 207-210 (2007).
    [CrossRef]
  9. S. J. Mihailov, D. Grobnic, H. M. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
    [CrossRef]
  10. G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, "Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber," Opt. Lett. 31, 2675-2677 (2006).
    [CrossRef] [PubMed]
  11. P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
    [CrossRef] [PubMed]
  12. S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett.,  82, 3230-3232 (2003).
    [CrossRef]
  13. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
    [CrossRef]
  14. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
    [CrossRef]
  15. D. N. Nikogosyan, "Multi-photon high-excitation-energy approach to fibre grating inscription," Meas. Sci. Tech.  18, R1-R29 (2007).
    [CrossRef]

2007 (2)

H. R. Sorensen, J. Canning, J. Laegsgaard, K. Hansen, and P. Varming, "Liquid filling of photonic crystal fibres for grating writing," Opt. Commun. 270, 207-210 (2007).
[CrossRef]

D. N. Nikogosyan, "Multi-photon high-excitation-energy approach to fibre grating inscription," Meas. Sci. Tech.  18, R1-R29 (2007).
[CrossRef]

2006 (4)

2005 (2)

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Y. F. Li, F. C. Salisbury, Z. M. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, "Interaction of supercontinuum and Raman solitons with microstructure fiber gratings," Opt. Express 13, 998-1007 (2005).
[CrossRef] [PubMed]

2004 (1)

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

2003 (2)

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett.,  82, 3230-3232 (2003).
[CrossRef]

N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
[CrossRef] [PubMed]

2002 (2)

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

2001 (1)

1999 (1)

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

Beugin, V.

Bigot, L.

Bolger, J. A.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Botten, L. C.

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

Brambilla, G.

Broeng, J.

S. J. Mihailov, D. Grobnic, H. M. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

Brown, T. G.

Buckley, E.

Canning, J.

H. R. Sorensen, J. Canning, J. Laegsgaard, K. Hansen, and P. Varming, "Liquid filling of photonic crystal fibres for grating writing," Opt. Commun. 270, 207-210 (2007).
[CrossRef]

N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
[CrossRef] [PubMed]

de Sterke, C. M.

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

Demos, S. G.

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett.,  82, 3230-3232 (2003).
[CrossRef]

Ding, H. M.

S. J. Mihailov, D. Grobnic, H. M. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

Dobb, H.

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Douay, M.

Eggleton, B. J.

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

Feder, K. S.

Fleureau, A.

Fotiadi, A. A.

Fu, L. B.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Gasca, L.

Grobnic, D.

S. J. Mihailov, D. Grobnic, H. M. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

Groothoff, N.

Hale, A.

Hansen, K.

H. R. Sorensen, J. Canning, J. Laegsgaard, K. Hansen, and P. Varming, "Liquid filling of photonic crystal fibres for grating writing," Opt. Commun. 270, 207-210 (2007).
[CrossRef]

Kalli, K.

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Kerbage, C.

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett.,  82, 3230-3232 (2003).
[CrossRef]

Kuhlmey, B. T.

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

Laegsgaard, J.

H. R. Sorensen, J. Canning, J. Laegsgaard, K. Hansen, and P. Varming, "Liquid filling of photonic crystal fibres for grating writing," Opt. Commun. 270, 207-210 (2007).
[CrossRef]

Lancry, M.

Lempereur, S.

Li, Y. F.

Lyttikainen, K.

Magi, E. C.

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Marshall, G. D.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

May, P.

Maystre, D.

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

McPhedran, R. C.

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

Melin, G.

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, H. M. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

Moore, E. D.

Nikogosyan, D. N.

Quiquempois, Y.

Renversez, G.

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

Salisbury, F. C.

Slattery, S. A.

Smelser, C. W.

S. J. Mihailov, D. Grobnic, H. M. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

Sorensen, H. R.

H. R. Sorensen, J. Canning, J. Laegsgaard, K. Hansen, and P. Varming, "Liquid filling of photonic crystal fibres for grating writing," Opt. Commun. 270, 207-210 (2007).
[CrossRef]

Spalter, S.

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

Steinvurzel, P.

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006).
[CrossRef] [PubMed]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Strasser, T. A.

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

Varming, P.

H. R. Sorensen, J. Canning, J. Laegsgaard, K. Hansen, and P. Varming, "Liquid filling of photonic crystal fibres for grating writing," Opt. Commun. 270, 207-210 (2007).
[CrossRef]

Webb, D. J.

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Westbrook, P. S.

White, T. P.

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

Windeler, R. S.

Withford, M. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

Zagari, J.

Zhu, Z. M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett.,  82, 3230-3232 (2003).
[CrossRef]

Electron. Lett. (2)

H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004).
[CrossRef]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. J. Mihailov, D. Grobnic, H. M. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

J.Opt. Soc. Am. B (1)

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
[CrossRef]

Meas. Sci. Tech. (1)

D. N. Nikogosyan, "Multi-photon high-excitation-energy approach to fibre grating inscription," Meas. Sci. Tech.  18, R1-R29 (2007).
[CrossRef]

Opt. Commun. (1)

H. R. Sorensen, J. Canning, J. Laegsgaard, K. Hansen, and P. Varming, "Liquid filling of photonic crystal fibres for grating writing," Opt. Commun. 270, 207-210 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Letters (1)

B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999).
[CrossRef]

Phys. (1)

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

Supplementary Material (4)

» Media 1: MOV (2568 KB)     
» Media 2: MOV (1128 KB)     
» Media 3: MOV (1156 KB)     
» Media 4: MOV (2105 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Optical micrograph of ESM-12-01 with the ΓM and ΓK directions labeled.

Fig. 2.
Fig. 2.

Schematic of the optical fiber arrangement and photoluminescence detection system. The PCF is attached to a computer controlled 360° rotation stage (ROT) before passing through two fiber capillaries (FC) that prevent translation of the fiber while allowing rotation. The fiber luminescence is imaged by a microscope objective (OBJ) on to a CCD camera (CCD). A cylindrical lens (CYL) focuses the incident laser beam (in grey) on the PCF between the fiber capillaries.

Fig. 3.
Fig. 3.

TE polarization PCF core photoluminescence intensity and computational model whole-core field intensity as a function of PCF rotation angle.

Fig. 4.
Fig. 4.

The modeled TE core field intensity as a function of angle. The different curves represent the field intensity averaged over the whole core area, one tenth of the area and the centre voxel only. Note that the blue curve here is the same as that in Fig. 3.

Fig. 5.
Fig. 5.

(2.57 MB) Two stills taken from a single movie of the effect of PCF rotation angle on transverse-coupling at 267 nm. The still on the left shows the case of poorest coupling to the core; the still on the right shows optimal coupling to the core. The incident light is linearly polarized in the TE direction and the scale is in units of the lattice spacing i.e. one unit represents 8.0 μm. [Media 1]

Fig. 6.
Fig. 6.

Modeled coupling to the fiber core with lateral shift for three angles of incidence. The angles of 26.3° and 15.0° respectively give maximum and minimum transverse-coupling efficiency to the core in the rotation study. The 30.0° case exhibits exact symmetry about the center point.

Figs. 7.
Figs. 7.

(a). and 7. (b). (1.13 MB & 1.16 MB) Movie stills of the positions of greatest transverse-coupling taken from two animations showing the effect of beam translation on transverse-coupling with a lattice angle of (a) 15.0° and (b) 26.3°. The lateral shifts are (a) δx/d = 1.00 and (b) δx/d = 0.22 . The incident light is linearly polarized in the TE direction and the scale is in units of the lattice spacing. [Media 2] [Media 3]

Fig. 8.
Fig. 8.

Modeled transverse-coupling efficiency for 267 nm and 800 nm radiation in both TE and TM polarizations. The 267 nm TE data presented here are the same as those shown in Fig. 3.

Fig. 9.
Fig. 9.

(2.11 MB) Two stills taken from a single movie of the effect of PCF rotation angle on transverse-coupling at 800 nm. The still on the left shows the case of poorest coupling to the core; the still on the right shows optimal coupling to the core. The incident light is linearly polarized in the TE direction and the scale is in units of the lattice spacing i.e. one unit represents 8.0 μm. [Media 4]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V ( r ) = V G ( r ) + n = B n 0 H n ( e r r 0 ) e in arg ( r r 0 ) ,
V G ( r ) = W 2 π e ( α α 0 ) 2 W 2 4 e iαx + i k 2 ν e 2 α 2 y ,
V ( r ) = l = 1 N c n = B n l H n ( 1 ) ( c r r l ) e in arg ( r r l ) + n = A n 0 J n ( c r r 0 ) e in arg ( r r 0 ) ,
V ( r ) = n = C n l J n ( i r r l ) e in arg ( r r l ) .
Q n l = i n W 2 π ( e ) n e ( α α 0 ) 2 W 2 4 e x l + i k 2 ν e 2 α 2 y l ( α i k 2 ν e 2 α 2 ) n .
B = ( I RH RJ L 0 R ̂ J 0 L ) 1 RJ L 0 T ̂ Q .

Metrics