Abstract

We present a novel approach to enhance light emission in Si and demonstrate a sub-bandgap light emitting diode based on the introduction of point defects that enhance the radiative recombination rate. Ion implantation, pulsed laser melting and rapid thermal annealing were used to create a diode containing a self-interstitial-rich optically active region from which the zero-phonon emission line at 1218 nm originates.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Si for Microphotonics, Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 2003) Vol. 194.
    [CrossRef]
  2. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Si-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338 (1996).
    [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in Si nanocrystals," Nature 408, 440-444 (2000).
    [CrossRef] [PubMed]
  4. Z. Lu, D. J. Lockwood, and J. Baribeau, "Quantum confinement and light emission in SiO2/Si superlattices," Nature 378, 258-260 (1995).
    [CrossRef]
  5. A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline Si," Nature 353, 335-338 (1991).
    [CrossRef]
  6. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature Si-based light-emitting diode," Nature 410, 192-194 (2001).
    [CrossRef] [PubMed]
  7. E. Ö. Sveinbjörnsson and J. Weber, "Room temperature electroluminescence from dislocation-rich silicon," Appl. Phys. Lett. 69, 2686-2688 (1996).
    [CrossRef]
  8. P. L. Bradfield, T. G. Brown and D. G. Hall, "Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon," Appl. Phys. Lett. 55, 100-102 (1989).
    [CrossRef]
  9. B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, "Room-temperature sharp line electroluminescence at ?= 1.54 ?m from an erbium-doped Si light-emitting diode," Appl. Phys. Lett. 64, 2842-2844 (1994).
    [CrossRef]
  10. D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, "A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5?m," Nature 387, 686-688 (1997).
    [CrossRef]
  11. S. G. Cloutier, P. A. Kossyrev and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline Si," Nat. Mater. 4, 887-891 (2005).
    [CrossRef] [PubMed]
  12. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  13. O. Boyraz and B. Jalali, "Demonstration of a Si Raman laser," Opt. Express 12, 5269 (2004).
    [CrossRef] [PubMed]
  14. M. S. Skolnick, A. G. Cullis and H. C. Webber, "Defect photoluminescence from pulsed-laser-annealed ion-implanted Si," Appl. Phys. Lett. 38, 464-466 (1981).
    [CrossRef]
  15. G. Götz, R. Nebelung, D. Stock and W. Ziegler, "Photoluminescence investigation of defects after ion-implantation and laser annealing," Nuclear Instruments and methods in physics research B 2, 757-760 (1984).
  16. G. Davies, "The optical properties of luminescence centers in Si," Phys. Rep. 176, 83-188 (1989).
    [CrossRef]
  17. S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
    [CrossRef]
  18. P.K. Giri, "Photoluminescence signature of Si interstitial cluster evolution from compact to extended structures in ion-implanted Si," Semiconductor science and technology  20, 638-644 (2005).
    [CrossRef]
  19. P. J. Schultz, T. D. Thompson and R. G. Elliman, "Activation energy for the photoluminescence W center in Si," Appl. Phys. Lett. 60, 59-61 (1992).
    [CrossRef]
  20. M. Nakamura, S. Nagai, Y. Aoki and H. Naramoto, "Oxygen participation in the formation of the photoluminescence W center and the center's origin in ion-implanted Si crystals," Appl. Phys. Lett. 72, 1347-1349 (1998).
    [CrossRef]
  21. G. M. Lopez and V. Fiorentini, "Structure, energetics and extrinsic levels of small self-interstitials clusters in Si," Phys. Rev. B,  69, 155206-155213 (2004).
    [CrossRef]
  22. C. R. Jones, J. Coutinho and P. R. Briddon, "Density-functional study of small interstitial clusters in Si: Comparison with experiments," Phys. Rev. B 72, 155208-155212 (2005).
    [CrossRef]
  23. D. E. Hoglund, M. O. Thompson and M. J. Aziz, "Experimental test of morphological stability theory for a planar interface during rapid solidification," Phys. Rev. B 58, 189 (1998).
    [CrossRef]
  24. T. G. Kim, J. M. Warrender and M. J. Aziz, "Strong sub-bandgap infrared absorption in Si supersaturated with sulfur," Appl. Phys. Lett. 88, 241902-241904 (2006).
    [CrossRef]
  25. M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
    [CrossRef]
  26. S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 69.
  27. M. Tabbal, T. Kim, J. M. Warrender, M. J. Aziz, B. L. Cardozo and R. S. Goldman, Unpublished.
  28. T. G. Brown and D. G. Hall, "Optical emission at 1.32 µm from sulfur-doped crystalline Si," Appl. Phys. Let. 49, 245-247 (1986).
    [CrossRef]
  29. P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
    [CrossRef]
  30. T. G. Brown, P. L. Bradfield and D. G. Hall, "Concentration dependence of optical emission from sulfur-doped crystalline Si," Appl. Phys. Lett. 51, 1585-1587 (1987).
    [CrossRef]
  31. S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 145.
  32. V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schröter, "Room-temperature silicon light-emitting diodes based on dislocation luminescence," Appl. Phys. Lett. 84, 2106-2108 (2004).
    [CrossRef]

2006 (1)

T. G. Kim, J. M. Warrender and M. J. Aziz, "Strong sub-bandgap infrared absorption in Si supersaturated with sulfur," Appl. Phys. Lett. 88, 241902-241904 (2006).
[CrossRef]

2005 (3)

S. G. Cloutier, P. A. Kossyrev and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline Si," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

C. R. Jones, J. Coutinho and P. R. Briddon, "Density-functional study of small interstitial clusters in Si: Comparison with experiments," Phys. Rev. B 72, 155208-155212 (2005).
[CrossRef]

2004 (3)

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schröter, "Room-temperature silicon light-emitting diodes based on dislocation luminescence," Appl. Phys. Lett. 84, 2106-2108 (2004).
[CrossRef]

O. Boyraz and B. Jalali, "Demonstration of a Si Raman laser," Opt. Express 12, 5269 (2004).
[CrossRef] [PubMed]

G. M. Lopez and V. Fiorentini, "Structure, energetics and extrinsic levels of small self-interstitials clusters in Si," Phys. Rev. B,  69, 155206-155213 (2004).
[CrossRef]

2001 (1)

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature Si-based light-emitting diode," Nature 410, 192-194 (2001).
[CrossRef] [PubMed]

2000 (2)

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in Si nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
[CrossRef]

S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
[CrossRef]

1998 (3)

D. E. Hoglund, M. O. Thompson and M. J. Aziz, "Experimental test of morphological stability theory for a planar interface during rapid solidification," Phys. Rev. B 58, 189 (1998).
[CrossRef]

M. Nakamura, S. Nagai, Y. Aoki and H. Naramoto, "Oxygen participation in the formation of the photoluminescence W center and the center's origin in ion-implanted Si crystals," Appl. Phys. Lett. 72, 1347-1349 (1998).
[CrossRef]

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

1997 (1)

D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, "A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5?m," Nature 387, 686-688 (1997).
[CrossRef]

1996 (3)

E. Ö. Sveinbjörnsson and J. Weber, "Room temperature electroluminescence from dislocation-rich silicon," Appl. Phys. Lett. 69, 2686-2688 (1996).
[CrossRef]

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Si-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338 (1996).
[CrossRef]

M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
[CrossRef]

M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
[CrossRef]

1995 (1)

Z. Lu, D. J. Lockwood, and J. Baribeau, "Quantum confinement and light emission in SiO2/Si superlattices," Nature 378, 258-260 (1995).
[CrossRef]

1994 (1)

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, "Room-temperature sharp line electroluminescence at ?= 1.54 ?m from an erbium-doped Si light-emitting diode," Appl. Phys. Lett. 64, 2842-2844 (1994).
[CrossRef]

1992 (1)

P. J. Schultz, T. D. Thompson and R. G. Elliman, "Activation energy for the photoluminescence W center in Si," Appl. Phys. Lett. 60, 59-61 (1992).
[CrossRef]

1991 (1)

A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline Si," Nature 353, 335-338 (1991).
[CrossRef]

1989 (2)

P. L. Bradfield, T. G. Brown and D. G. Hall, "Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon," Appl. Phys. Lett. 55, 100-102 (1989).
[CrossRef]

G. Davies, "The optical properties of luminescence centers in Si," Phys. Rep. 176, 83-188 (1989).
[CrossRef]

1987 (1)

T. G. Brown, P. L. Bradfield and D. G. Hall, "Concentration dependence of optical emission from sulfur-doped crystalline Si," Appl. Phys. Lett. 51, 1585-1587 (1987).
[CrossRef]

1986 (1)

T. G. Brown and D. G. Hall, "Optical emission at 1.32 µm from sulfur-doped crystalline Si," Appl. Phys. Let. 49, 245-247 (1986).
[CrossRef]

1984 (1)

G. Götz, R. Nebelung, D. Stock and W. Ziegler, "Photoluminescence investigation of defects after ion-implantation and laser annealing," Nuclear Instruments and methods in physics research B 2, 757-760 (1984).

1981 (1)

M. S. Skolnick, A. G. Cullis and H. C. Webber, "Defect photoluminescence from pulsed-laser-annealed ion-implanted Si," Appl. Phys. Lett. 38, 464-466 (1981).
[CrossRef]

Aoki, Y.

M. Nakamura, S. Nagai, Y. Aoki and H. Naramoto, "Oxygen participation in the formation of the photoluminescence W center and the center's origin in ion-implanted Si crystals," Appl. Phys. Lett. 72, 1347-1349 (1998).
[CrossRef]

Aziz, M. J.

T. G. Kim, J. M. Warrender and M. J. Aziz, "Strong sub-bandgap infrared absorption in Si supersaturated with sulfur," Appl. Phys. Lett. 88, 241902-241904 (2006).
[CrossRef]

D. E. Hoglund, M. O. Thompson and M. J. Aziz, "Experimental test of morphological stability theory for a planar interface during rapid solidification," Phys. Rev. B 58, 189 (1998).
[CrossRef]

M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
[CrossRef]

M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
[CrossRef]

Badylevich, M.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schröter, "Room-temperature silicon light-emitting diodes based on dislocation luminescence," Appl. Phys. Lett. 84, 2106-2108 (2004).
[CrossRef]

Baribeau, J.

Z. Lu, D. J. Lockwood, and J. Baribeau, "Quantum confinement and light emission in SiO2/Si superlattices," Nature 378, 258-260 (1995).
[CrossRef]

Boyraz, O.

Bradfield, P. L.

P. L. Bradfield, T. G. Brown and D. G. Hall, "Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon," Appl. Phys. Lett. 55, 100-102 (1989).
[CrossRef]

T. G. Brown, P. L. Bradfield and D. G. Hall, "Concentration dependence of optical emission from sulfur-doped crystalline Si," Appl. Phys. Lett. 51, 1585-1587 (1987).
[CrossRef]

Briddon, P. R.

C. R. Jones, J. Coutinho and P. R. Briddon, "Density-functional study of small interstitial clusters in Si: Comparison with experiments," Phys. Rev. B 72, 155208-155212 (2005).
[CrossRef]

Brown, T. G.

P. L. Bradfield, T. G. Brown and D. G. Hall, "Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon," Appl. Phys. Lett. 55, 100-102 (1989).
[CrossRef]

T. G. Brown, P. L. Bradfield and D. G. Hall, "Concentration dependence of optical emission from sulfur-doped crystalline Si," Appl. Phys. Lett. 51, 1585-1587 (1987).
[CrossRef]

T. G. Brown and D. G. Hall, "Optical emission at 1.32 µm from sulfur-doped crystalline Si," Appl. Phys. Let. 49, 245-247 (1986).
[CrossRef]

Brunco, D. P.

M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
[CrossRef]

Canham, L. T.

A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline Si," Nature 353, 335-338 (1991).
[CrossRef]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline Si," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Coffa, S.

S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
[CrossRef]

S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
[CrossRef]

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Coutinho, J.

C. R. Jones, J. Coutinho and P. R. Briddon, "Density-functional study of small interstitial clusters in Si: Comparison with experiments," Phys. Rev. B 72, 155208-155212 (2005).
[CrossRef]

Cullis, A. G.

A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline Si," Nature 353, 335-338 (1991).
[CrossRef]

M. S. Skolnick, A. G. Cullis and H. C. Webber, "Defect photoluminescence from pulsed-laser-annealed ion-implanted Si," Appl. Phys. Lett. 38, 464-466 (1981).
[CrossRef]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in Si nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Davies, G.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

G. Davies, "The optical properties of luminescence centers in Si," Phys. Rep. 176, 83-188 (1989).
[CrossRef]

Duttagupta, S. P.

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Si-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338 (1996).
[CrossRef]

Elliman, R. G.

P. J. Schultz, T. D. Thompson and R. G. Elliman, "Activation energy for the photoluminescence W center in Si," Appl. Phys. Lett. 60, 59-61 (1992).
[CrossRef]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Fauchet, P. M.

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Si-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338 (1996).
[CrossRef]

Fiorentini, V.

G. M. Lopez and V. Fiorentini, "Structure, energetics and extrinsic levels of small self-interstitials clusters in Si," Phys. Rev. B,  69, 155206-155213 (2004).
[CrossRef]

Franzo, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in Si nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Giri, P.K.

S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
[CrossRef]

Götz, G.

G. Götz, R. Nebelung, D. Stock and W. Ziegler, "Photoluminescence investigation of defects after ion-implantation and laser annealing," Nuclear Instruments and methods in physics research B 2, 757-760 (1984).

Gwilliam, R. M.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature Si-based light-emitting diode," Nature 410, 192-194 (2001).
[CrossRef] [PubMed]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Hall, D. G.

P. L. Bradfield, T. G. Brown and D. G. Hall, "Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon," Appl. Phys. Lett. 55, 100-102 (1989).
[CrossRef]

T. G. Brown, P. L. Bradfield and D. G. Hall, "Concentration dependence of optical emission from sulfur-doped crystalline Si," Appl. Phys. Lett. 51, 1585-1587 (1987).
[CrossRef]

T. G. Brown and D. G. Hall, "Optical emission at 1.32 µm from sulfur-doped crystalline Si," Appl. Phys. Let. 49, 245-247 (1986).
[CrossRef]

Harry, M.

D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, "A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5?m," Nature 387, 686-688 (1997).
[CrossRef]

Hirschman, K. D.

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Si-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338 (1996).
[CrossRef]

Hoglund, D. E.

D. E. Hoglund, M. O. Thompson and M. J. Aziz, "Experimental test of morphological stability theory for a planar interface during rapid solidification," Phys. Rev. B 58, 189 (1998).
[CrossRef]

Homewood, K. P.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature Si-based light-emitting diode," Nature 410, 192-194 (2001).
[CrossRef] [PubMed]

D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, "A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5?m," Nature 387, 686-688 (1997).
[CrossRef]

Ittermann, B.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

Izotov, A.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schröter, "Room-temperature silicon light-emitting diodes based on dislocation luminescence," Appl. Phys. Lett. 84, 2106-2108 (2004).
[CrossRef]

Jacobson, D. C.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, "Room-temperature sharp line electroluminescence at ?= 1.54 ?m from an erbium-doped Si light-emitting diode," Appl. Phys. Lett. 64, 2842-2844 (1994).
[CrossRef]

Jalali, B.

Jeyanathan, L.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

Jones, C. R.

C. R. Jones, J. Coutinho and P. R. Briddon, "Density-functional study of small interstitial clusters in Si: Comparison with experiments," Phys. Rev. B 72, 155208-155212 (2005).
[CrossRef]

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Kim, T. G.

T. G. Kim, J. M. Warrender and M. J. Aziz, "Strong sub-bandgap infrared absorption in Si supersaturated with sulfur," Appl. Phys. Lett. 88, 241902-241904 (2006).
[CrossRef]

Kimerling, L. C.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, "Room-temperature sharp line electroluminescence at ?= 1.54 ?m from an erbium-doped Si light-emitting diode," Appl. Phys. Lett. 64, 2842-2844 (1994).
[CrossRef]

Kittl, J. A.

M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
[CrossRef]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline Si," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Kveder, V.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schröter, "Room-temperature silicon light-emitting diodes based on dislocation luminescence," Appl. Phys. Lett. 84, 2106-2108 (2004).
[CrossRef]

Ledain, S.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature Si-based light-emitting diode," Nature 410, 192-194 (2001).
[CrossRef] [PubMed]

Leong, D.

D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, "A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5?m," Nature 387, 686-688 (1997).
[CrossRef]

Libertino, S.

S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
[CrossRef]

Lightowlers, E. C.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Lockwood, D. J.

Z. Lu, D. J. Lockwood, and J. Baribeau, "Quantum confinement and light emission in SiO2/Si superlattices," Nature 378, 258-260 (1995).
[CrossRef]

Lopez, G. M.

G. M. Lopez and V. Fiorentini, "Structure, energetics and extrinsic levels of small self-interstitials clusters in Si," Phys. Rev. B,  69, 155206-155213 (2004).
[CrossRef]

Lourenco, M. A.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature Si-based light-emitting diode," Nature 410, 192-194 (2001).
[CrossRef] [PubMed]

Lu, Z.

Z. Lu, D. J. Lockwood, and J. Baribeau, "Quantum confinement and light emission in SiO2/Si superlattices," Nature 378, 258-260 (1995).
[CrossRef]

Mason, P. W.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in Si nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Michel, J.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, "Room-temperature sharp line electroluminescence at ?= 1.54 ?m from an erbium-doped Si light-emitting diode," Appl. Phys. Lett. 64, 2842-2844 (1994).
[CrossRef]

Nagai, S.

M. Nakamura, S. Nagai, Y. Aoki and H. Naramoto, "Oxygen participation in the formation of the photoluminescence W center and the center's origin in ion-implanted Si crystals," Appl. Phys. Lett. 72, 1347-1349 (1998).
[CrossRef]

Nakamura, M.

M. Nakamura, S. Nagai, Y. Aoki and H. Naramoto, "Oxygen participation in the formation of the photoluminescence W center and the center's origin in ion-implanted Si crystals," Appl. Phys. Lett. 72, 1347-1349 (1998).
[CrossRef]

Naramoto, H.

M. Nakamura, S. Nagai, Y. Aoki and H. Naramoto, "Oxygen participation in the formation of the photoluminescence W center and the center's origin in ion-implanted Si crystals," Appl. Phys. Lett. 72, 1347-1349 (1998).
[CrossRef]

Nebelung, R.

G. Götz, R. Nebelung, D. Stock and W. Ziegler, "Photoluminescence investigation of defects after ion-implantation and laser annealing," Nuclear Instruments and methods in physics research B 2, 757-760 (1984).

Ng, W. L.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature Si-based light-emitting diode," Nature 410, 192-194 (2001).
[CrossRef] [PubMed]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Ostapenko, S. S.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in Si nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Poate, J. M.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, "Room-temperature sharp line electroluminescence at ?= 1.54 ?m from an erbium-doped Si light-emitting diode," Appl. Phys. Lett. 64, 2842-2844 (1994).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in Si nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Reeson, K. J.

D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, "A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5?m," Nature 387, 686-688 (1997).
[CrossRef]

Ren, F. Y. G.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, "Room-temperature sharp line electroluminescence at ?= 1.54 ?m from an erbium-doped Si light-emitting diode," Appl. Phys. Lett. 64, 2842-2844 (1994).
[CrossRef]

Rimini, E.

S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
[CrossRef]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Sanders, P. G.

M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
[CrossRef]

Schröter, W.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schröter, "Room-temperature silicon light-emitting diodes based on dislocation luminescence," Appl. Phys. Lett. 84, 2106-2108 (2004).
[CrossRef]

Schultz, P. J.

P. J. Schultz, T. D. Thompson and R. G. Elliman, "Activation energy for the photoluminescence W center in Si," Appl. Phys. Lett. 60, 59-61 (1992).
[CrossRef]

Seibt, M.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schröter, "Room-temperature silicon light-emitting diodes based on dislocation luminescence," Appl. Phys. Lett. 84, 2106-2108 (2004).
[CrossRef]

Shao, G.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature Si-based light-emitting diode," Nature 410, 192-194 (2001).
[CrossRef] [PubMed]

Singh, M.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

Skolnick, M. S.

M. S. Skolnick, A. G. Cullis and H. C. Webber, "Defect photoluminescence from pulsed-laser-annealed ion-implanted Si," Appl. Phys. Lett. 38, 464-466 (1981).
[CrossRef]

Spinella, C.

S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
[CrossRef]

Steinman, E.

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schröter, "Room-temperature silicon light-emitting diodes based on dislocation luminescence," Appl. Phys. Lett. 84, 2106-2108 (2004).
[CrossRef]

Stock, D.

G. Götz, R. Nebelung, D. Stock and W. Ziegler, "Photoluminescence investigation of defects after ion-implantation and laser annealing," Nuclear Instruments and methods in physics research B 2, 757-760 (1984).

Sun, H. J.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

Sveinbjörnsson, E. Ö.

E. Ö. Sveinbjörnsson and J. Weber, "Room temperature electroluminescence from dislocation-rich silicon," Appl. Phys. Lett. 69, 2686-2688 (1996).
[CrossRef]

Thompson, M. O.

D. E. Hoglund, M. O. Thompson and M. J. Aziz, "Experimental test of morphological stability theory for a planar interface during rapid solidification," Phys. Rev. B 58, 189 (1998).
[CrossRef]

M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
[CrossRef]

Thompson, T. D.

P. J. Schultz, T. D. Thompson and R. G. Elliman, "Activation energy for the photoluminescence W center in Si," Appl. Phys. Lett. 60, 59-61 (1992).
[CrossRef]

Tsybeskov, L.

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Si-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338 (1996).
[CrossRef]

Warrender, J. M.

T. G. Kim, J. M. Warrender and M. J. Aziz, "Strong sub-bandgap infrared absorption in Si supersaturated with sulfur," Appl. Phys. Lett. 88, 241902-241904 (2006).
[CrossRef]

Watkins, G. D.

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

Webber, H. C.

M. S. Skolnick, A. G. Cullis and H. C. Webber, "Defect photoluminescence from pulsed-laser-annealed ion-implanted Si," Appl. Phys. Lett. 38, 464-466 (1981).
[CrossRef]

Weber, J.

E. Ö. Sveinbjörnsson and J. Weber, "Room temperature electroluminescence from dislocation-rich silicon," Appl. Phys. Lett. 69, 2686-2688 (1996).
[CrossRef]

Xu, J.

S. G. Cloutier, P. A. Kossyrev and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline Si," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Zheng, B.

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, "Room-temperature sharp line electroluminescence at ?= 1.54 ?m from an erbium-doped Si light-emitting diode," Appl. Phys. Lett. 64, 2842-2844 (1994).
[CrossRef]

Ziegler, W.

G. Götz, R. Nebelung, D. Stock and W. Ziegler, "Photoluminescence investigation of defects after ion-implantation and laser annealing," Nuclear Instruments and methods in physics research B 2, 757-760 (1984).

Appl. Phys. Let. (1)

T. G. Brown and D. G. Hall, "Optical emission at 1.32 µm from sulfur-doped crystalline Si," Appl. Phys. Let. 49, 245-247 (1986).
[CrossRef]

Appl. Phys. Lett. (10)

T. G. Brown, P. L. Bradfield and D. G. Hall, "Concentration dependence of optical emission from sulfur-doped crystalline Si," Appl. Phys. Lett. 51, 1585-1587 (1987).
[CrossRef]

T. G. Kim, J. M. Warrender and M. J. Aziz, "Strong sub-bandgap infrared absorption in Si supersaturated with sulfur," Appl. Phys. Lett. 88, 241902-241904 (2006).
[CrossRef]

M. S. Skolnick, A. G. Cullis and H. C. Webber, "Defect photoluminescence from pulsed-laser-annealed ion-implanted Si," Appl. Phys. Lett. 38, 464-466 (1981).
[CrossRef]

S. Coffa, S. Libertino and C. Spinella, "Transition from small interstitial clusters to extended {311} defects in ion-implanted Si," Appl. Phys. Lett. 76, 321-323 (2000); P. K. Giri, S. Coffa, and E. Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted Si," Appl. Phys. Lett. 78, 291-293 (2001).
[CrossRef]

P. J. Schultz, T. D. Thompson and R. G. Elliman, "Activation energy for the photoluminescence W center in Si," Appl. Phys. Lett. 60, 59-61 (1992).
[CrossRef]

M. Nakamura, S. Nagai, Y. Aoki and H. Naramoto, "Oxygen participation in the formation of the photoluminescence W center and the center's origin in ion-implanted Si crystals," Appl. Phys. Lett. 72, 1347-1349 (1998).
[CrossRef]

E. Ö. Sveinbjörnsson and J. Weber, "Room temperature electroluminescence from dislocation-rich silicon," Appl. Phys. Lett. 69, 2686-2688 (1996).
[CrossRef]

P. L. Bradfield, T. G. Brown and D. G. Hall, "Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon," Appl. Phys. Lett. 55, 100-102 (1989).
[CrossRef]

B. Zheng, J. Michel, F. Y. G. Ren, L. C. Kimerling, D. C. Jacobson and J. M. Poate, "Room-temperature sharp line electroluminescence at ?= 1.54 ?m from an erbium-doped Si light-emitting diode," Appl. Phys. Lett. 64, 2842-2844 (1994).
[CrossRef]

V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt and W. Schröter, "Room-temperature silicon light-emitting diodes based on dislocation luminescence," Appl. Phys. Lett. 84, 2106-2108 (2004).
[CrossRef]

Metall. Mater. Trans. A (1)

M. J. Aziz, "Interface Attachment Kinetics in Alloy Solidification," Metall. Mater. Trans. A 27, 671 (1996); J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thompson, "Complete Experimental Test for Kinetic Models of Rapid Alloy Solidification," Acta Mater. 48, 4797 (2000).
[CrossRef]

Nat. Mater. (1)

S. G. Cloutier, P. A. Kossyrev and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline Si," Nat. Mater. 4, 887-891 (2005).
[CrossRef] [PubMed]

Nature (7)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, "An all-Si Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, "A silicon/iron-disilicide light-emittingdiode operating at a wavelength of 1.5?m," Nature 387, 686-688 (1997).
[CrossRef]

K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, "Si-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338 (1996).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in Si nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Z. Lu, D. J. Lockwood, and J. Baribeau, "Quantum confinement and light emission in SiO2/Si superlattices," Nature 378, 258-260 (1995).
[CrossRef]

A. G. Cullis and L. T. Canham, "Visible light emission due to quantum size effects in highly porous crystalline Si," Nature 353, 335-338 (1991).
[CrossRef]

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao and K. P. Homewood, "An efficient room-temperature Si-based light-emitting diode," Nature 410, 192-194 (2001).
[CrossRef] [PubMed]

Nuclear Instruments and methods in physics research B (1)

G. Götz, R. Nebelung, D. Stock and W. Ziegler, "Photoluminescence investigation of defects after ion-implantation and laser annealing," Nuclear Instruments and methods in physics research B 2, 757-760 (1984).

Opt. Express (1)

Phys. Rep. (1)

G. Davies, "The optical properties of luminescence centers in Si," Phys. Rep. 176, 83-188 (1989).
[CrossRef]

Phys. Rev. B (4)

G. M. Lopez and V. Fiorentini, "Structure, energetics and extrinsic levels of small self-interstitials clusters in Si," Phys. Rev. B,  69, 155206-155213 (2004).
[CrossRef]

C. R. Jones, J. Coutinho and P. R. Briddon, "Density-functional study of small interstitial clusters in Si: Comparison with experiments," Phys. Rev. B 72, 155208-155212 (2005).
[CrossRef]

D. E. Hoglund, M. O. Thompson and M. J. Aziz, "Experimental test of morphological stability theory for a planar interface during rapid solidification," Phys. Rev. B 58, 189 (1998).
[CrossRef]

P. W. Mason, H. J. Sun, B. Ittermann, S. S. Ostapenko, G. D. Watkins, L. Jeyanathan, M. Singh, G. Davies and E. C. Lightowlers, "Sulfur-related metastable luminescence center in Si," Phys. Rev. B  58, 7007-7019 (1998).
[CrossRef]

Other (5)

S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 145.

S. M. Sze, Physics of semiconductor devices, 2nd ed. (Wiley and Sons, New York, 1981), p. 69.

M. Tabbal, T. Kim, J. M. Warrender, M. J. Aziz, B. L. Cardozo and R. S. Goldman, Unpublished.

P.K. Giri, "Photoluminescence signature of Si interstitial cluster evolution from compact to extended structures in ion-implanted Si," Semiconductor science and technology  20, 638-644 (2005).
[CrossRef]

S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Si for Microphotonics, Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 2003) Vol. 194.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Surface-emission photoluminescence spectrum of a sample without contacts at 7 K. The inset show the schematic of a Si light emitting diode (not to scale).

Fig. 2.
Fig. 2.

(right) Current –voltage curves at temperature 290 K, 80 K and 6 K. (left) Edge-emission electroluminescence spectra of the LED at a temperature of 80 K and 6 K. The black arrows indicate the position of the Si band-edge luminescence.

Fig. 3.
Fig. 3.

Temperature dependent intensity of W-line emission at a constant current of 5 mA. The red straight line is the best fit to the high temperature data points. The inset shows the W-line emission power as a function of injection current at 6 K. The line is a guide to the eye.

Metrics